Upload 12 files
Browse files- k400/b_2/20231224_142746.log +0 -0
- k400/b_2/20231224_142746.log.json +0 -0
- k400/b_2/b_2.py +133 -0
- k400/b_2/best_pred.pkl +3 -0
- k400/b_2/best_top1_acc_epoch_149.pth +3 -0
- k400/b_3/20231229_093404.log +0 -0
- k400/b_3/20231229_093404.log.json +0 -0
- k400/b_3/20240101_134812.log +0 -0
- k400/b_3/20240101_134812.log.json +0 -0
- k400/b_3/b_3.py +134 -0
- k400/b_3/best_pred.pkl +3 -0
- k400/b_3/best_top1_acc_epoch_149.pth +3 -0
k400/b_2/20231224_142746.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_2/20231224_142746.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_2/b_2.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
modality = 'b'
|
2 |
+
graph = 'coco_new'
|
3 |
+
work_dir = './work_dirs/test_prototype/k400/b_2'
|
4 |
+
model = dict(
|
5 |
+
type='RecognizerGCN_7_1_1',
|
6 |
+
backbone=dict(
|
7 |
+
type='GCN_7_1_1',
|
8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
9 |
+
graph_cfg=dict(
|
10 |
+
layout='coco_new',
|
11 |
+
mode='random',
|
12 |
+
num_filter=8,
|
13 |
+
init_off=0.04,
|
14 |
+
init_std=0.02)),
|
15 |
+
cls_head=dict(type='SimpleHead_7_4_13', num_classes=400, in_channels=384))
|
16 |
+
memcached = True
|
17 |
+
mc_cfg = ('localhost', 22077)
|
18 |
+
dataset_type = 'PoseDataset'
|
19 |
+
ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
|
20 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
21 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
22 |
+
box_thr = 0.5
|
23 |
+
valid_ratio = 0.0
|
24 |
+
train_pipeline = [
|
25 |
+
dict(type='DecompressPose', squeeze=True),
|
26 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
27 |
+
dict(type='PoseDecode'),
|
28 |
+
dict(
|
29 |
+
type='Flip',
|
30 |
+
flip_ratio=0.5,
|
31 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
32 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
33 |
+
dict(type='Kinetics_Transform'),
|
34 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
35 |
+
dict(type='FormatGCNInput', num_person=2),
|
36 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
37 |
+
dict(type='ToTensor', keys=['keypoint'])
|
38 |
+
]
|
39 |
+
val_pipeline = [
|
40 |
+
dict(type='DecompressPose', squeeze=True),
|
41 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
42 |
+
dict(type='PoseDecode'),
|
43 |
+
dict(type='Kinetics_Transform'),
|
44 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
45 |
+
dict(type='FormatGCNInput', num_person=2),
|
46 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
47 |
+
dict(type='ToTensor', keys=['keypoint'])
|
48 |
+
]
|
49 |
+
test_pipeline = [
|
50 |
+
dict(type='DecompressPose', squeeze=True),
|
51 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
52 |
+
dict(type='PoseDecode'),
|
53 |
+
dict(type='Kinetics_Transform'),
|
54 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
55 |
+
dict(type='FormatGCNInput', num_person=2),
|
56 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
57 |
+
dict(type='ToTensor', keys=['keypoint'])
|
58 |
+
]
|
59 |
+
data = dict(
|
60 |
+
videos_per_gpu=64,
|
61 |
+
workers_per_gpu=16,
|
62 |
+
test_dataloader=dict(videos_per_gpu=1),
|
63 |
+
train=dict(
|
64 |
+
type='PoseDataset',
|
65 |
+
ann_file=
|
66 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
67 |
+
split='train',
|
68 |
+
pipeline=[
|
69 |
+
dict(type='DecompressPose', squeeze=True),
|
70 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
71 |
+
dict(type='PoseDecode'),
|
72 |
+
dict(
|
73 |
+
type='Flip',
|
74 |
+
flip_ratio=0.5,
|
75 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
76 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
77 |
+
dict(type='Kinetics_Transform'),
|
78 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
79 |
+
dict(type='FormatGCNInput', num_person=2),
|
80 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
81 |
+
dict(type='ToTensor', keys=['keypoint'])
|
82 |
+
],
|
83 |
+
box_thr=0.5,
|
84 |
+
valid_ratio=0.0,
|
85 |
+
memcached=True,
|
86 |
+
mc_cfg=('localhost', 22077)),
|
87 |
+
val=dict(
|
88 |
+
type='PoseDataset',
|
89 |
+
ann_file=
|
90 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
91 |
+
split='val',
|
92 |
+
pipeline=[
|
93 |
+
dict(type='DecompressPose', squeeze=True),
|
94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
95 |
+
dict(type='PoseDecode'),
|
96 |
+
dict(type='Kinetics_Transform'),
|
97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
98 |
+
dict(type='FormatGCNInput', num_person=2),
|
99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
101 |
+
],
|
102 |
+
box_thr=0.5,
|
103 |
+
memcached=True,
|
104 |
+
mc_cfg=('localhost', 22077)),
|
105 |
+
test=dict(
|
106 |
+
type='PoseDataset',
|
107 |
+
ann_file=
|
108 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
109 |
+
split='val',
|
110 |
+
pipeline=[
|
111 |
+
dict(type='DecompressPose', squeeze=True),
|
112 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
113 |
+
dict(type='PoseDecode'),
|
114 |
+
dict(type='Kinetics_Transform'),
|
115 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
116 |
+
dict(type='FormatGCNInput', num_person=2),
|
117 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
118 |
+
dict(type='ToTensor', keys=['keypoint'])
|
119 |
+
],
|
120 |
+
box_thr=0.5,
|
121 |
+
memcached=True,
|
122 |
+
mc_cfg=('localhost', 22077)))
|
123 |
+
optimizer = dict(
|
124 |
+
type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
125 |
+
optimizer_config = dict(grad_clip=None)
|
126 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
127 |
+
total_epochs = 150
|
128 |
+
checkpoint_config = dict(interval=1)
|
129 |
+
evaluation = dict(
|
130 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
131 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
132 |
+
dist_params = dict(backend='nccl')
|
133 |
+
gpu_ids = range(0, 1)
|
k400/b_2/best_pred.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:444422c71676687f77b22030bf6a644bb831d7b023a70b14340c8ef0dc7eb766
|
3 |
+
size 44883632
|
k400/b_2/best_top1_acc_epoch_149.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a4f64e93499c4ba963c295b86fc5d187ff508a8317cdd4be73f7dd39dceb649
|
3 |
+
size 33915366
|
k400/b_3/20231229_093404.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_3/20231229_093404.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_3/20240101_134812.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_3/20240101_134812.log.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
k400/b_3/b_3.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
modality = 'b'
|
2 |
+
graph = 'coco_new'
|
3 |
+
work_dir = './work_dirs/test_prototype/k400/b_3'
|
4 |
+
model = dict(
|
5 |
+
type='RecognizerGCN_7_1_1',
|
6 |
+
backbone=dict(
|
7 |
+
type='GCN_7_1_1',
|
8 |
+
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
|
9 |
+
graph_cfg=dict(
|
10 |
+
layout='coco_new',
|
11 |
+
mode='random',
|
12 |
+
num_filter=8,
|
13 |
+
init_off=0.04,
|
14 |
+
init_std=0.02)),
|
15 |
+
cls_head=dict(type='SimpleHead_7_4_13', num_classes=400, in_channels=384))
|
16 |
+
memcached = True
|
17 |
+
mc_cfg = ('localhost', 22077)
|
18 |
+
dataset_type = 'PoseDataset'
|
19 |
+
ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
|
20 |
+
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
|
21 |
+
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
|
22 |
+
box_thr = 0.5
|
23 |
+
valid_ratio = 0.0
|
24 |
+
train_pipeline = [
|
25 |
+
dict(type='DecompressPose', squeeze=True),
|
26 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
27 |
+
dict(type='PoseDecode'),
|
28 |
+
dict(
|
29 |
+
type='Flip',
|
30 |
+
flip_ratio=0.5,
|
31 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
32 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
33 |
+
dict(type='Kinetics_Transform'),
|
34 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
35 |
+
dict(type='FormatGCNInput', num_person=2),
|
36 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
37 |
+
dict(type='ToTensor', keys=['keypoint'])
|
38 |
+
]
|
39 |
+
val_pipeline = [
|
40 |
+
dict(type='DecompressPose', squeeze=True),
|
41 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
42 |
+
dict(type='PoseDecode'),
|
43 |
+
dict(type='Kinetics_Transform'),
|
44 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
45 |
+
dict(type='FormatGCNInput', num_person=2),
|
46 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
47 |
+
dict(type='ToTensor', keys=['keypoint'])
|
48 |
+
]
|
49 |
+
test_pipeline = [
|
50 |
+
dict(type='DecompressPose', squeeze=True),
|
51 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
52 |
+
dict(type='PoseDecode'),
|
53 |
+
dict(type='Kinetics_Transform'),
|
54 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
55 |
+
dict(type='FormatGCNInput', num_person=2),
|
56 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
57 |
+
dict(type='ToTensor', keys=['keypoint'])
|
58 |
+
]
|
59 |
+
data = dict(
|
60 |
+
videos_per_gpu=64,
|
61 |
+
workers_per_gpu=16,
|
62 |
+
test_dataloader=dict(videos_per_gpu=1),
|
63 |
+
train=dict(
|
64 |
+
type='PoseDataset',
|
65 |
+
ann_file=
|
66 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
67 |
+
split='train',
|
68 |
+
pipeline=[
|
69 |
+
dict(type='DecompressPose', squeeze=True),
|
70 |
+
dict(type='UniformSampleFrames', clip_len=100),
|
71 |
+
dict(type='PoseDecode'),
|
72 |
+
dict(
|
73 |
+
type='Flip',
|
74 |
+
flip_ratio=0.5,
|
75 |
+
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
|
76 |
+
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
|
77 |
+
dict(type='Kinetics_Transform'),
|
78 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
79 |
+
dict(type='FormatGCNInput', num_person=2),
|
80 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
81 |
+
dict(type='ToTensor', keys=['keypoint'])
|
82 |
+
],
|
83 |
+
box_thr=0.5,
|
84 |
+
valid_ratio=0.0,
|
85 |
+
memcached=True,
|
86 |
+
mc_cfg=('localhost', 22077)),
|
87 |
+
val=dict(
|
88 |
+
type='PoseDataset',
|
89 |
+
ann_file=
|
90 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
91 |
+
split='val',
|
92 |
+
pipeline=[
|
93 |
+
dict(type='DecompressPose', squeeze=True),
|
94 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
|
95 |
+
dict(type='PoseDecode'),
|
96 |
+
dict(type='Kinetics_Transform'),
|
97 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
98 |
+
dict(type='FormatGCNInput', num_person=2),
|
99 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
100 |
+
dict(type='ToTensor', keys=['keypoint'])
|
101 |
+
],
|
102 |
+
box_thr=0.5,
|
103 |
+
memcached=True,
|
104 |
+
mc_cfg=('localhost', 22077)),
|
105 |
+
test=dict(
|
106 |
+
type='PoseDataset',
|
107 |
+
ann_file=
|
108 |
+
'/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
|
109 |
+
split='val',
|
110 |
+
pipeline=[
|
111 |
+
dict(type='DecompressPose', squeeze=True),
|
112 |
+
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
|
113 |
+
dict(type='PoseDecode'),
|
114 |
+
dict(type='Kinetics_Transform'),
|
115 |
+
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
|
116 |
+
dict(type='FormatGCNInput', num_person=2),
|
117 |
+
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
|
118 |
+
dict(type='ToTensor', keys=['keypoint'])
|
119 |
+
],
|
120 |
+
box_thr=0.5,
|
121 |
+
memcached=True,
|
122 |
+
mc_cfg=('localhost', 22077)))
|
123 |
+
optimizer = dict(
|
124 |
+
type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
|
125 |
+
optimizer_config = dict(grad_clip=None)
|
126 |
+
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
|
127 |
+
total_epochs = 150
|
128 |
+
checkpoint_config = dict(interval=1)
|
129 |
+
evaluation = dict(
|
130 |
+
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
|
131 |
+
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
|
132 |
+
dist_params = dict(backend='nccl')
|
133 |
+
gpu_ids = range(0, 1)
|
134 |
+
resume_from = './work_dirs/test_prototype/k400/b_3/latest.pth'
|
k400/b_3/best_pred.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70a042f2f2d6d10abafddc827778699463556f5d37a99bb5d72936ceefedf80a
|
3 |
+
size 44885297
|
k400/b_3/best_top1_acc_epoch_149.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2bce694d628c06446e4f7a6b9744ee0ed9ad79a4a40bb83b03aae48a6ef7027
|
3 |
+
size 33920678
|