firework8 commited on
Commit
9a47fb0
·
verified ·
1 Parent(s): ecf81eb

Upload 12 files

Browse files
k400/b_2/20231224_142746.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_2/20231224_142746.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_2/b_2.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'b'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/b_2'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_13', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
k400/b_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:444422c71676687f77b22030bf6a644bb831d7b023a70b14340c8ef0dc7eb766
3
+ size 44883632
k400/b_2/best_top1_acc_epoch_149.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a4f64e93499c4ba963c295b86fc5d187ff508a8317cdd4be73f7dd39dceb649
3
+ size 33915366
k400/b_3/20231229_093404.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_3/20231229_093404.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_3/20240101_134812.log ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_3/20240101_134812.log.json ADDED
The diff for this file is too large to render. See raw diff
 
k400/b_3/b_3.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'b'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/k400/b_3'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_13', num_classes=400, in_channels=384))
16
+ memcached = True
17
+ mc_cfg = ('localhost', 22077)
18
+ dataset_type = 'PoseDataset'
19
+ ann_file = '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl'
20
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
21
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
22
+ box_thr = 0.5
23
+ valid_ratio = 0.0
24
+ train_pipeline = [
25
+ dict(type='DecompressPose', squeeze=True),
26
+ dict(type='UniformSampleFrames', clip_len=100),
27
+ dict(type='PoseDecode'),
28
+ dict(
29
+ type='Flip',
30
+ flip_ratio=0.5,
31
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
32
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
33
+ dict(type='Kinetics_Transform'),
34
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
35
+ dict(type='FormatGCNInput', num_person=2),
36
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
37
+ dict(type='ToTensor', keys=['keypoint'])
38
+ ]
39
+ val_pipeline = [
40
+ dict(type='DecompressPose', squeeze=True),
41
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
42
+ dict(type='PoseDecode'),
43
+ dict(type='Kinetics_Transform'),
44
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
45
+ dict(type='FormatGCNInput', num_person=2),
46
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
47
+ dict(type='ToTensor', keys=['keypoint'])
48
+ ]
49
+ test_pipeline = [
50
+ dict(type='DecompressPose', squeeze=True),
51
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
52
+ dict(type='PoseDecode'),
53
+ dict(type='Kinetics_Transform'),
54
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
55
+ dict(type='FormatGCNInput', num_person=2),
56
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
57
+ dict(type='ToTensor', keys=['keypoint'])
58
+ ]
59
+ data = dict(
60
+ videos_per_gpu=64,
61
+ workers_per_gpu=16,
62
+ test_dataloader=dict(videos_per_gpu=1),
63
+ train=dict(
64
+ type='PoseDataset',
65
+ ann_file=
66
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
67
+ split='train',
68
+ pipeline=[
69
+ dict(type='DecompressPose', squeeze=True),
70
+ dict(type='UniformSampleFrames', clip_len=100),
71
+ dict(type='PoseDecode'),
72
+ dict(
73
+ type='Flip',
74
+ flip_ratio=0.5,
75
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
76
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
77
+ dict(type='Kinetics_Transform'),
78
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
79
+ dict(type='FormatGCNInput', num_person=2),
80
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
81
+ dict(type='ToTensor', keys=['keypoint'])
82
+ ],
83
+ box_thr=0.5,
84
+ valid_ratio=0.0,
85
+ memcached=True,
86
+ mc_cfg=('localhost', 22077)),
87
+ val=dict(
88
+ type='PoseDataset',
89
+ ann_file=
90
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
91
+ split='val',
92
+ pipeline=[
93
+ dict(type='DecompressPose', squeeze=True),
94
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
95
+ dict(type='PoseDecode'),
96
+ dict(type='Kinetics_Transform'),
97
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
98
+ dict(type='FormatGCNInput', num_person=2),
99
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
100
+ dict(type='ToTensor', keys=['keypoint'])
101
+ ],
102
+ box_thr=0.5,
103
+ memcached=True,
104
+ mc_cfg=('localhost', 22077)),
105
+ test=dict(
106
+ type='PoseDataset',
107
+ ann_file=
108
+ '/data1/hao.wang/reproducation/hongda.liu/pyskl_data/k400/k400_hrnet.pkl',
109
+ split='val',
110
+ pipeline=[
111
+ dict(type='DecompressPose', squeeze=True),
112
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
113
+ dict(type='PoseDecode'),
114
+ dict(type='Kinetics_Transform'),
115
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
116
+ dict(type='FormatGCNInput', num_person=2),
117
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
118
+ dict(type='ToTensor', keys=['keypoint'])
119
+ ],
120
+ box_thr=0.5,
121
+ memcached=True,
122
+ mc_cfg=('localhost', 22077)))
123
+ optimizer = dict(
124
+ type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)
125
+ optimizer_config = dict(grad_clip=None)
126
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
127
+ total_epochs = 150
128
+ checkpoint_config = dict(interval=1)
129
+ evaluation = dict(
130
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
131
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
132
+ dist_params = dict(backend='nccl')
133
+ gpu_ids = range(0, 1)
134
+ resume_from = './work_dirs/test_prototype/k400/b_3/latest.pth'
k400/b_3/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70a042f2f2d6d10abafddc827778699463556f5d37a99bb5d72936ceefedf80a
3
+ size 44885297
k400/b_3/best_top1_acc_epoch_149.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2bce694d628c06446e4f7a6b9744ee0ed9ad79a4a40bb83b03aae48a6ef7027
3
+ size 33920678