modality = 'j' graph = 'coco_new' work_dir = './work_dirs/test_prototype/finegym/j_2' model = dict( type='RecognizerGCN_7_1_1', backbone=dict( type='GCN_7_1_2', tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'], graph_cfg=dict( layout='coco_new', mode='random', num_filter=8, init_off=0.04, init_std=0.02)), cls_head=dict(type='SimpleHead_7_4_12', num_classes=99, in_channels=384)) dataset_type = 'PoseDataset' ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl' left_kp = [1, 3, 5, 7, 9, 11, 13, 15] right_kp = [2, 4, 6, 8, 10, 12, 14, 16] train_pipeline = [ dict(type='UniformSampleFrames', clip_len=100), dict(type='PoseDecode'), dict( type='Flip', flip_ratio=0.5, left_kp=[1, 3, 5, 7, 9, 11, 13, 15], right_kp=[2, 4, 6, 8, 10, 12, 14, 16]), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ] val_pipeline = [ dict(type='UniformSampleFrames', clip_len=100, num_clips=1), dict(type='PoseDecode'), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ] test_pipeline = [ dict(type='UniformSampleFrames', clip_len=100, num_clips=10), dict(type='PoseDecode'), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ] data = dict( videos_per_gpu=16, workers_per_gpu=4, test_dataloader=dict(videos_per_gpu=1), train=dict( type='PoseDataset', ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', pipeline=[ dict(type='UniformSampleFrames', clip_len=100), dict(type='PoseDecode'), dict( type='Flip', flip_ratio=0.5, left_kp=[1, 3, 5, 7, 9, 11, 13, 15], right_kp=[2, 4, 6, 8, 10, 12, 14, 16]), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ], split='train'), val=dict( type='PoseDataset', ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', pipeline=[ dict(type='UniformSampleFrames', clip_len=100, num_clips=1), dict(type='PoseDecode'), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ], split='val'), test=dict( type='PoseDataset', ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', pipeline=[ dict(type='UniformSampleFrames', clip_len=100, num_clips=10), dict(type='PoseDecode'), dict(type='Kinetics_Transform'), dict(type='GenSkeFeat', dataset='coco_new', feats=['j']), dict(type='FormatGCNInput', num_person=2), dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), dict(type='ToTensor', keys=['keypoint']) ], split='val')) optimizer = dict( type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True) optimizer_config = dict(grad_clip=None) lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) total_epochs = 150 checkpoint_config = dict(interval=1) evaluation = dict( interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')]) dist_params = dict(backend='nccl') gpu_ids = range(0, 1)