File size: 17,076 Bytes
80fc598
 
6157fb4
 
 
80fc598
6157fb4
 
 
 
 
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6157fb4
 
 
 
 
 
 
 
 
 
80fc598
6157fb4
 
 
 
 
 
 
 
 
 
 
 
 
80fc598
6157fb4
 
80fc598
 
6157fb4
 
 
 
 
 
 
80fc598
6157fb4
80fc598
6157fb4
 
 
 
 
80fc598
6157fb4
80fc598
6157fb4
c84f28d
 
6157fb4
 
 
 
 
 
80fc598
6157fb4
 
 
 
 
 
80fc598
6157fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
80fc598
9310fbd
 
 
 
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8163f
80fc598
 
 
ad8163f
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8163f
 
9310fbd
 
 
 
80fc598
 
 
6157fb4
 
 
 
80fc598
 
 
 
 
6157fb4
 
 
 
9310fbd
6157fb4
 
 
 
 
 
80fc598
6157fb4
 
 
 
 
 
80fc598
 
 
6157fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80fc598
 
 
 
 
 
 
 
6157fb4
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
 
6157fb4
 
80fc598
 
6157fb4
 
80fc598
 
 
6157fb4
 
 
80fc598
 
 
 
 
 
9310fbd
6157fb4
80fc598
 
 
 
 
 
 
 
 
 
6157fb4
 
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
c84f28d
 
80fc598
 
 
 
 
 
 
 
 
 
 
 
c84f28d
80fc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6157fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ede4239
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import dataclasses
from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
import transformers

from .ultravox_config import UltravoxConfig


@dataclasses.dataclass
class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
    # when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
    include_alt_fields: bool = False

    def __call__(self, features, *args, **kwargs):
        audio_values = [x for f in features for x in f.pop("audio_values", [])]
        audio_lens = [x for f in features for x in f.pop("audio_lens", [])]
        audio_token_len = [x for f in features for x in f.pop("audio_token_len", [])]
        audio_token_start_idx = [
            x for f in features for x in f.pop("audio_token_start_idx", [])
        ]

        if self.include_alt_fields:
            # these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
            alt_features = [
                {
                    "input_ids": f.pop("alt_input_ids"),
                    "attention_mask": f.pop("alt_attention_mask"),
                    "labels": f.pop("alt_labels"),
                }
                for f in features
            ]

        batch = super().__call__(features, *args, **kwargs)
        if self.include_alt_fields:
            alt_batch = super().__call__(alt_features, *args, **kwargs)
            batch["alt_input_ids"] = alt_batch["input_ids"]
            batch["alt_attention_mask"] = alt_batch["attention_mask"]
            batch["alt_labels"] = alt_batch["labels"]

        batch["audio_token_start_idx"] = torch.stack(audio_token_start_idx)
        batch["audio_lens"] = torch.stack(audio_lens)
        batch["audio_token_len"] = torch.stack(audio_token_len)

        # Pad the last dimension of all audio_values to the same length, with 0s on the right.
        if audio_values:
            max_len = max([x.shape[-1] for x in audio_values])
            batch["audio_values"] = torch.stack(
                [F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
            )
            if self.tokenizer.padding_side == "left":
                input_ids_lens = torch.LongTensor(
                    [f["input_ids"].shape[-1] for f in features]
                )
                displacement = batch["input_ids"].shape[-1] - input_ids_lens
                displacement = displacement.repeat_interleave(
                    batch["audio_batch_size"].squeeze(-1)
                )
                batch["audio_token_start_idx"] += displacement.to(
                    batch["audio_token_start_idx"].device
                )
        return batch


class UltravoxProcessor(transformers.ProcessorMixin):
    """
    Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.

    Args:
        audio_processor: The audio processor for the audio encoder.
        tokenizer: The tokenizer for the language model.
    """

    attributes = ["audio_processor", "tokenizer"]
    audio_processor_class = ("WhisperProcessor",)
    tokenizer_class = (
        "PreTrainedTokenizer",
        "PreTrainedTokenizerFast",
    )

    tokenizer: transformers.PreTrainedTokenizerBase
    audio_processor: transformers.ProcessorMixin

    def __init__(
        self,
        audio_processor=None,
        tokenizer=None,
        audio_padding: str = "longest",
        encoder_ds_factor: int = 2,
        stack_factor: int = 8,
        audio_placeholder: str = "<|audio|>",
        # Defaults to whisper encoder context size
        audio_context_size: Optional[int] = 3000,
    ):
        """
        Args:
            audio_processor: The audio processor for the audio encoder.
            tokenizer: The tokenizer for the language model.
            audio_padding: The padding strategy for the audio encoder.
            stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
            encoder_ds_factor: The downsampling factor of the audio encoder.
            audio_placeholder: The placeholder for the audio in the text.
            audio_context_size: The maximum number of frames that the audio encoder can handle.
        """
        self.audio_padding = audio_padding
        self.encoder_ds_factor = encoder_ds_factor
        self.stack_factor = stack_factor
        self.audio_placeholder = audio_placeholder
        self.audio_context_size = audio_context_size
        assert (
            tokenizer.eos_token is not None
        ), "The tokenizer has no EOS token. Cannot recover."
        self.vocab = tokenizer.get_vocab()
        self.audio_replacement = tokenizer.eos_token
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = tokenizer.eos_token_id

        super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
        config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        audio_processor = transformers.AutoProcessor.from_pretrained(
            config.audio_model_id
            or config.audio_config._name_or_path
            or "openai/whisper-tiny"
        )

        tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path, **kwargs
        )
        tokenizer.padding_side = "left"
        tokenizer.pad_token = tokenizer.eos_token

        return cls(
            audio_processor=audio_processor,
            tokenizer=tokenizer,
            stack_factor=config.stack_factor,
        )

    def _chunk_and_pad_audio(
        self,
        audio_values: torch.Tensor,
        audio_lens: torch.Tensor,
        include_audio_num_chunks: bool = False,
    ) -> Dict[str, Any]:
        """
        Processes the audio batch by chunking any items in the batch according to the audio_context_size,
        padding the last chunk if needed, and returns a dictionary with updated audio data.

        Args:
            audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
            audio_lens (torch.Tensor): A tensor of audio lengths.

        Returns:
            Dict[str, Any]: Dictionary with the following keys:
                - "audio_values": The concatenated audio tensor after chunking and padding.
                - "audio_lens": Tensor of lengths for each chunk.
                - "audio_is_continuation": Tensor of booleans indicating if the chunk is a continuation of the previous chunk.
                - "audio_batch_size": A Tensor with one integer representing the number of chunks.

        """
        chunked_audio_values: List[torch.Tensor] = []
        chunked_audio_lens: List[int] = []
        is_continuation_list: List[bool] = []
        num_chunks: List[int] = []
        context_size = self.audio_context_size or audio_values.shape[-1]

        for i in range(audio_values.shape[0]):  # iterate over the batch
            num_chunks.append(int(np.ceil(audio_lens[i] / context_size)))
            for offset in range(0, audio_lens[i], context_size):
                is_continuation = offset > 0
                chunk = audio_values[i, :, offset : offset + context_size]
                if is_continuation and chunk.shape[-1] < context_size:
                    # N.B. We only need to pad continuation chunks. If none of the samples require chunking, the
                    # batch might not (need to) be padded all the way to the audio_context_size, in which case
                    # we've already included the padding above. On the other hand, if we have any continuation
                    # chunks we know that the batch needs to be padded to audio_context_size because that's what
                    # we're slicing to.
                    chunk = F.pad(chunk, (0, context_size - chunk.shape[-1]))
                chunked_audio_values.append(chunk)
                chunked_audio_lens.append(
                    min(int(audio_lens[i].item()) - offset, context_size)
                )
                is_continuation_list.append(is_continuation)

        return {
            "audio_values": torch.stack(chunked_audio_values, dim=0),
            "audio_lens": torch.tensor(
                chunked_audio_lens, dtype=torch.int64, device=audio_values.device
            ),
            "audio_is_continuation": torch.tensor(
                is_continuation_list, dtype=torch.bool, device=audio_values.device
            ),
            "audio_batch_size": torch.tensor(
                [len(chunked_audio_values)], device=audio_values.device
            ),
            "audio_num_chunks": (
                torch.tensor(num_chunks, dtype=torch.int64, device=audio_values.device)
                if include_audio_num_chunks
                else None
            ),
        }

    def __call__(
        self,
        text: Optional[str] = None,
        audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
        audios: Optional[
            Union[
                List[Union[np.ndarray, torch.Tensor]], Union[np.ndarray, torch.Tensor]
            ]
        ] = None,
        sampling_rate: Optional[int] = None,
        return_tensors: Optional[
            Union[str, transformers.TensorType]
        ] = transformers.TensorType.PYTORCH,
        include_audio_num_chunks: bool = False,
        **kwargs,
    ) -> transformers.BatchFeature:
        """
        Main method to prepare for the model one text sequence and audio. This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
        audio processor's [`~WhisperProcessor.__call__`] if `audio` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`):
                The sequence to be encoded. Sequence can be a string or (pretokenized string).
            audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The audio to be prepared. Audio can be a single-channel (1-dimensional) NumPy array or PyTorch tensor.
            audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
                A list or two dimensional array of audio to be prepared.
            sampling_rate (`int`, *optional*, defaults to 16000):
                Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
                you are doing.
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
            - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
              Returned when `audio` is not `None`.
            - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
        """
        # TODO: Add support for multiple text inputs.
        if audio is not None and audios is not None:
            raise ValueError("Only one of `audio` or `audios` should be provided.")
        elif audio is not None:
            audios = audio if isinstance(audio, list) or audio.ndim == 2 else [audio]
        elif audios is None:
            audios = []

        data = {}
        audio_is_continuation = []
        if len(audios) > 0:
            audios = [x.numpy() if isinstance(x, torch.Tensor) else x for x in audios]

            # Pad out each audio to at least 2 hops (the minimum required by the processor).
            hop_length = self.audio_processor.feature_extractor.hop_length
            audios = [
                (
                    np.pad(x, (0, 2 * hop_length - len(x)), mode="constant")
                    if len(x) < 2 * hop_length
                    else x
                )
                for x in audios
            ]

            # Main audio processing. The processor is model-specific.
            x: transformers.BatchFeature = self.audio_processor(
                audios,
                sampling_rate=sampling_rate,
                padding="longest",
                pad_to_multiple_of=hop_length,  # The attention mask effectively gets padded to the hop length, so pad the audio to be consistent.
                truncation=False,
                return_attention_mask=True,
                **kwargs,
            )

            data.update(
                self._chunk_and_pad_audio(
                    audio_values=torch.as_tensor(
                        x.input_features if "input_features" in x else x.input_values
                    ),
                    audio_lens=torch.as_tensor(x.attention_mask).sum(-1),
                    include_audio_num_chunks=include_audio_num_chunks,
                )
            )

            audio_is_continuation = data.pop("audio_is_continuation")
            data["audio_token_len"] = torch.ceil(
                data["audio_lens"] / (self.encoder_ds_factor * self.stack_factor)
            ).to(dtype=torch.int)

        if text is not None:
            if not isinstance(text, str):
                raise ValueError("Text must be a string. Batch mode not supported yet.")

            # Special tokens like BOS should already have been added by the caller.
            tokenized_parts = self.tokenizer(
                text.split(
                    "<|audio|>"  # The placeholder isn't part of the vocabulary, so split the text around it.
                ),
                add_special_tokens=False,
                **kwargs,
            )

            audio_token_start_idx = []
            placeholder_index = -1
            split_input_ids = tokenized_parts["input_ids"]
            input_ids: List[int] = []

            audio_replacement_token_id = self.vocab[self.audio_replacement]

            for i, token_len in enumerate(data.get("audio_token_len", [])):
                if not audio_is_continuation[i]:
                    placeholder_index += 1
                    if placeholder_index >= len(split_input_ids):
                        raise ValueError(
                            f"Text contains too few audio placeholders. (Expected {len(audios)} placeholders)"
                        )

                    input_ids.extend(split_input_ids[placeholder_index])

                audio_token_start_idx.append(len(input_ids))

                input_ids.extend([audio_replacement_token_id] * token_len)

            # Include any tokens after the last audio.
            placeholder_index += 1
            if placeholder_index != len(split_input_ids) - 1:
                raise ValueError(
                    f"Text contains too many audio placeholders. (Expected {len(audios)} placeholders)"
                )
            input_ids.extend(split_input_ids[placeholder_index])

            if "audio_token_len" in data:
                data["audio_token_start_idx"] = torch.as_tensor(audio_token_start_idx)

            data["input_ids"] = [input_ids]
            data["attention_mask"] = [[1] * len(input_ids)]

            # Ensure that there are no audio placeholders after the last audio.

        return transformers.BatchFeature(data=data, tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        audio_processor_input_names = self.audio_processor.model_input_names
        return list(set(tokenizer_input_names + audio_processor_input_names))


UltravoxProcessor.register_for_auto_class()

transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)