|
import logging |
|
|
|
import transformers |
|
|
|
AUDIO_TOKEN = "<|audio|>" |
|
|
|
|
|
def from_pretrained_text_tokenizer( |
|
*args, **kwargs |
|
) -> transformers.PreTrainedTokenizerBase: |
|
""" |
|
Create a tokenizer with the additional special token for audio. |
|
This is mainly used for VLLM to work properly. This repo does not currently require it. |
|
""" |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(*args, **kwargs) |
|
tokenizer.add_special_tokens({"additional_special_tokens": [AUDIO_TOKEN]}) |
|
logging.info(f"Audio token id: {get_audio_token_id(tokenizer)}") |
|
return tokenizer |
|
|
|
|
|
def get_audio_token_id(tokenizer: transformers.PreTrainedTokenizerBase) -> int: |
|
audio_token_id = tokenizer.encode(AUDIO_TOKEN, add_special_tokens=False) |
|
assert len(audio_token_id) == 1, "Audio token should be a single token" |
|
return audio_token_id[0] |
|
|