Update README.md
Browse files
README.md
CHANGED
@@ -52,7 +52,10 @@ import torch
|
|
52 |
import torch.nn as nn
|
53 |
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
54 |
import torch.nn.functional as F
|
55 |
-
from transformers import AutoTokenizer
|
|
|
|
|
|
|
56 |
|
57 |
def get_tokenizer(pretrain, model, padding_side="left", use_fast=True):
|
58 |
tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast)
|
@@ -63,22 +66,17 @@ def get_tokenizer(pretrain, model, padding_side="left", use_fast=True):
|
|
63 |
model.config.pad_token_id = tokenizer.pad_token_id
|
64 |
return tokenizer
|
65 |
|
66 |
-
def get_reward_model(base_causal_model, base_llm_model,
|
67 |
class CustomRewardModel(base_causal_model):
|
68 |
|
69 |
def __init__(self, config: AutoConfig):
|
70 |
super().__init__(config)
|
71 |
setattr(self, self.base_model_prefix, base_llm_model(config))
|
72 |
-
|
73 |
-
self.value_head = nn.Linear(config.hidden_size, 1, bias=False)
|
74 |
-
else:
|
75 |
-
self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False)
|
76 |
-
if add_prompt_head:
|
77 |
-
self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False)
|
78 |
-
|
79 |
-
self.is_general_preference = is_general_preference
|
80 |
|
81 |
-
self.
|
|
|
|
|
82 |
|
83 |
def custom_forward(
|
84 |
self,
|
@@ -115,7 +113,7 @@ def get_reward_model(base_causal_model, base_llm_model, is_general_preference: b
|
|
115 |
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1)
|
116 |
eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1]
|
117 |
reward_list = []
|
118 |
-
for dim in range(
|
119 |
reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices))
|
120 |
reward = torch.cat(reward_list, dim=1)
|
121 |
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
|
@@ -169,11 +167,10 @@ def generate_high_dim_result_with_prompt(model, value_head_dim, chosen_reward, r
|
|
169 |
return result
|
170 |
|
171 |
class GPMPipeline:
|
172 |
-
def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True,
|
173 |
self.device = device
|
174 |
self.is_general_preference = is_general_preference
|
175 |
-
|
176 |
-
self.value_head_dim = value_head_dim
|
177 |
self.truncation = truncation
|
178 |
self.max_length = max_length
|
179 |
self.padding = padding
|
@@ -183,7 +180,24 @@ class GPMPipeline:
|
|
183 |
config._attn_implementation = "flash_attention_2"
|
184 |
base_class = AutoModel._model_mapping[type(config)]
|
185 |
base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None)
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
# configure model
|
189 |
self.model = cls_class.from_pretrained(
|
@@ -192,6 +206,7 @@ class GPMPipeline:
|
|
192 |
trust_remote_code=True,
|
193 |
torch_dtype=torch.bfloat16 if bf16 else "auto",
|
194 |
)
|
|
|
195 |
# configure tokenizer
|
196 |
self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True)
|
197 |
self.tokenizer.truncation_side = "right"
|
@@ -262,12 +277,13 @@ context2 = [
|
|
262 |
{"role": "assistant", "content": response2}
|
263 |
]
|
264 |
|
265 |
-
rm = GPMPipeline("general-preference/GPM-Llama-3.1-8B-Instruct"
|
266 |
|
267 |
reward1, prompt_hidden_state = rm([context1], return_prompt=True)
|
268 |
reward2 = rm([context2])
|
269 |
|
270 |
result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state)
|
|
|
271 |
|
272 |
result_batch = result.float().cpu().detach().numpy().tolist()
|
273 |
|
@@ -278,6 +294,4 @@ results = []
|
|
278 |
]
|
279 |
|
280 |
print(result_batch)
|
281 |
-
|
282 |
-
|
283 |
```
|
|
|
52 |
import torch.nn as nn
|
53 |
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
54 |
import torch.nn.functional as F
|
55 |
+
from transformers import AutoTokenizer
|
56 |
+
import os
|
57 |
+
from safetensors.torch import load_file
|
58 |
+
from huggingface_hub import snapshot_download
|
59 |
|
60 |
def get_tokenizer(pretrain, model, padding_side="left", use_fast=True):
|
61 |
tokenizer = AutoTokenizer.from_pretrained(pretrain, trust_remote_code=True, use_fast=use_fast)
|
|
|
66 |
model.config.pad_token_id = tokenizer.pad_token_id
|
67 |
return tokenizer
|
68 |
|
69 |
+
def get_reward_model(base_causal_model, base_llm_model, value_head_dim: int, add_prompt_head: bool, is_general_preference: bool=False):
|
70 |
class CustomRewardModel(base_causal_model):
|
71 |
|
72 |
def __init__(self, config: AutoConfig):
|
73 |
super().__init__(config)
|
74 |
setattr(self, self.base_model_prefix, base_llm_model(config))
|
75 |
+
self.is_general_preference = is_general_preference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
self.value_head = nn.Linear(config.hidden_size, value_head_dim, bias=False)
|
78 |
+
if add_prompt_head:
|
79 |
+
self.prompt_head = nn.Linear(config.hidden_size, value_head_dim // 2, bias=False)
|
80 |
|
81 |
def custom_forward(
|
82 |
self,
|
|
|
113 |
eos_indices = attention_mask.size(1) - 1 - attention_mask.long().fliplr().argmax(dim=1)
|
114 |
eos_indices = eos_indices.unsqueeze(1) # Change shape to [batch_size, 1]
|
115 |
reward_list = []
|
116 |
+
for dim in range(self.value_head.out_features):
|
117 |
reward_list.append(values[:,:,dim].gather(dim=1, index=eos_indices))
|
118 |
reward = torch.cat(reward_list, dim=1)
|
119 |
reward = F.normalize(reward, p=2, dim=-1) # Shape will be [batch_size, value_head_dim]
|
|
|
167 |
return result
|
168 |
|
169 |
class GPMPipeline:
|
170 |
+
def __init__(self, model_name_or_path, device=torch.device("cuda:0"), is_general_preference: bool=True, bf16: bool=True, truncation: bool=True, max_length: int=4096, padding: bool=True, tau: float=0.1):
|
171 |
self.device = device
|
172 |
self.is_general_preference = is_general_preference
|
173 |
+
|
|
|
174 |
self.truncation = truncation
|
175 |
self.max_length = max_length
|
176 |
self.padding = padding
|
|
|
180 |
config._attn_implementation = "flash_attention_2"
|
181 |
base_class = AutoModel._model_mapping[type(config)]
|
182 |
base_causal_class = AutoModelForCausalLM._model_mapping.get(type(config), None)
|
183 |
+
|
184 |
+
try:
|
185 |
+
dir_path = snapshot_download(repo_id=model_name_or_path)
|
186 |
+
except Exception as e:
|
187 |
+
dir_path = model_name_or_path
|
188 |
+
combined_weights = {}
|
189 |
+
for filename in os.listdir(dir_path):
|
190 |
+
if filename.endswith(".safetensors"):
|
191 |
+
file_path = os.path.join(dir_path, filename)
|
192 |
+
weights = load_file(file_path)
|
193 |
+
combined_weights.update(weights)
|
194 |
+
|
195 |
+
if "value_head.weight" in combined_weights:
|
196 |
+
self.value_head_dim = combined_weights["value_head.weight"].shape[0]
|
197 |
+
|
198 |
+
self.add_prompt_head = True if "prompt_head.weight" in combined_weights else False
|
199 |
+
|
200 |
+
cls_class = get_reward_model(base_causal_class, base_class, add_prompt_head=self.add_prompt_head, value_head_dim=self.value_head_dim, is_general_preference=is_general_preference)
|
201 |
|
202 |
# configure model
|
203 |
self.model = cls_class.from_pretrained(
|
|
|
206 |
trust_remote_code=True,
|
207 |
torch_dtype=torch.bfloat16 if bf16 else "auto",
|
208 |
)
|
209 |
+
|
210 |
# configure tokenizer
|
211 |
self.tokenizer = get_tokenizer(model_name_or_path, self.model, "left", use_fast=True)
|
212 |
self.tokenizer.truncation_side = "right"
|
|
|
277 |
{"role": "assistant", "content": response2}
|
278 |
]
|
279 |
|
280 |
+
rm = GPMPipeline("general-preference/GPM-Llama-3.1-8B-Instruct")
|
281 |
|
282 |
reward1, prompt_hidden_state = rm([context1], return_prompt=True)
|
283 |
reward2 = rm([context2])
|
284 |
|
285 |
result = generate_high_dim_result_with_prompt(rm.model, rm.value_head_dim, reward1, reward2, prompt_hidden_state)
|
286 |
+
# score = result / rm.tau
|
287 |
|
288 |
result_batch = result.float().cpu().detach().numpy().tolist()
|
289 |
|
|
|
294 |
]
|
295 |
|
296 |
print(result_batch)
|
|
|
|
|
297 |
```
|