--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: billsum-model-z results: [] datasets: - FiscalNote/billsum language: - en --- # billsum-model-z This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an [FiscalNote/billsum](https://huggingface.co/datasets/FiscalNote/billsum) dataset. It achieves the following results on the evaluation set: - Loss: 1.9649 - Rouge1: 0.473 - Rouge2: 0.2725 - Rougel: 0.3613 - Rougelsum: 0.3612 - Gen Len: 129.5922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| | 2.2403 | 1.0 | 4738 | 2.0142 | 0.470 | 0.2680 | 0.3586 | 0.3585 | 130.1138 | | 2.1743 | 2.0 | 9476 | 1.9649 | 0.473 | 0.2725 | 0.3613 | 0.3612 | 129.5922 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3