--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny.en tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: whisper-tiny.en-speech-commands-v1-t_70 results: - task: name: Audio Classification type: audio-classification dataset: name: speech_commands type: speech_commands config: v0.02 split: None args: v0.02 metrics: - name: Accuracy type: accuracy value: 0.8057553956834532 --- # whisper-tiny.en-speech-commands-v1-t_70 This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 1.1281 - Accuracy: 0.8058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 192 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3022 | 1.0 | 206 | 1.1935 | 0.7972 | | 0.1455 | 2.0 | 412 | 1.1336 | 0.8008 | | 0.0752 | 3.0 | 618 | 1.1281 | 0.8058 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1