Zero-Shot Image Classification
Transformers
Safetensors
siglip
vision
Inference Endpoints
nielsr HF staff commited on
Commit
6bf82f2
·
verified ·
1 Parent(s): 3f9f96c

Update pipeline tag to image-to-text

Browse files

This PR updates the `pipeline_tag` metadata from `zero-shot-image-classification` to `image-to-text`. While zero-shot image classification is a key capability of SigLIP 2, `image-to-text` better reflects the model's broader functionality as a vision-language encoder capable of image-text retrieval and serving as a vision encoder for other tasks beyond zero-shot classification.

Files changed (1) hide show
  1. README.md +7 -8
README.md CHANGED
@@ -1,19 +1,18 @@
1
  ---
 
2
  license: apache-2.0
 
3
  tags:
4
  - vision
5
  widget:
6
- - src: >-
7
- https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg
8
- candidate_labels: bee in the sky, bee on the flower
9
- example_title: Bee
10
- library_name: transformers
11
- pipeline_tag: zero-shot-image-classification
12
  ---
13
 
14
  # SigLIP 2 Base
15
 
16
- [SigLIP 2](https://huggingface.co/papers/2502.14786) extends the pretraining objective of
17
  [SigLIP](https://huggingface.co/papers/2303.15343) with prior, independently developed techniques
18
  into a unified recipe, for improved semantic understanding, localization, and dense features.
19
 
@@ -99,4 +98,4 @@ Evaluation of SigLIP 2 is shown below (taken from the paper).
99
  primaryClass={cs.CV},
100
  url={https://arxiv.org/abs/2502.14786},
101
  }
102
- ```
 
1
  ---
2
+ library_name: transformers
3
  license: apache-2.0
4
+ pipeline_tag: image-to-text
5
  tags:
6
  - vision
7
  widget:
8
+ - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg
9
+ candidate_labels: bee in the sky, bee on the flower
10
+ example_title: Bee
 
 
 
11
  ---
12
 
13
  # SigLIP 2 Base
14
 
15
+ [SigLIP 2](https://hf.co/papers/2502.14786) extends the pretraining objective of
16
  [SigLIP](https://huggingface.co/papers/2303.15343) with prior, independently developed techniques
17
  into a unified recipe, for improved semantic understanding, localization, and dense features.
18
 
 
98
  primaryClass={cs.CV},
99
  url={https://arxiv.org/abs/2502.14786},
100
  }
101
+ ```