--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolVLM-Instruct tags: - generated_from_trainer model-index: - name: SmolVLM-Instruct-med-vqav1 results: [] --- # SmolVLM-Instruct-med-vqav1 This model is a fine-tuned version of [HuggingFaceTB/SmolVLM-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_HF with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3885 | 0.4454 | 100 | 0.2168 | | 0.1862 | 0.8909 | 200 | 0.1728 | | 0.1258 | 1.3341 | 300 | 0.1678 | | 0.1131 | 1.7795 | 400 | 0.1615 | | 0.0885 | 2.2227 | 500 | 0.1682 | | 0.0656 | 2.6682 | 600 | 0.1712 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.0 - Tokenizers 0.21.0