helizac commited on
Commit
93dfd4e
·
verified ·
1 Parent(s): 9e77f53

Upload 15 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|assistant|>": 151672,
5
+ "<|box_end|>": 151649,
6
+ "<|box_start|>": 151648,
7
+ "<|endofassistant|>": 151673,
8
+ "<|endofimg|>": 151667,
9
+ "<|endofslice|>": 151682,
10
+ "<|endofsystemprompt|>": 151669,
11
+ "<|endoftext|>": 151643,
12
+ "<|endofuser|>": 151671,
13
+ "<|file_sep|>": 151664,
14
+ "<|fim_middle|>": 151660,
15
+ "<|fim_pad|>": 151662,
16
+ "<|fim_prefix|>": 151659,
17
+ "<|fim_suffix|>": 151661,
18
+ "<|im_end|>": 151645,
19
+ "<|im_start|>": 151644,
20
+ "<|image_gen_end|>": 151687,
21
+ "<|image_gen_start|>": 151686,
22
+ "<|image_pad|>": 151655,
23
+ "<|imgpad|>": 151665,
24
+ "<|imgrowend|>": 151683,
25
+ "<|img|>": 151666,
26
+ "<|object_ref_end|>": 151647,
27
+ "<|object_ref_start|>": 151646,
28
+ "<|pictotext|>": 151679,
29
+ "<|pic|>": 151677,
30
+ "<|polygon_end|>": 151685,
31
+ "<|polygon_start|>": 151684,
32
+ "<|quad_end|>": 151651,
33
+ "<|quad_start|>": 151650,
34
+ "<|ref_end|>": 151675,
35
+ "<|ref_start|>": 151674,
36
+ "<|repo_name|>": 151663,
37
+ "<|slice|>": 151681,
38
+ "<|systemprompt|>": 151668,
39
+ "<|text|>": 151678,
40
+ "<|user|>": 151670,
41
+ "<|video_pad|>": 151656,
42
+ "<|vision_end|>": 151653,
43
+ "<|vision_pad|>": 151654,
44
+ "<|vision_start|>": 151652,
45
+ "[PAD]": 151680,
46
+ "[SEP]": 151676
47
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{%- for m in messages %}{%- if m.role == 'system' %}{{- '<|system|>' + m.content + '<|endofsystem|>\n' }}{%- elif m.role == 'user' %}{% if m.content is string %}{{- '<|user|>' + m.content + '<|endofuser|>' }}{% else %} {% for content in m.content %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|img|><|imgpad|><|endofimg|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|img|><|video_pad|><|endofimg|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}{%- endif %}{%- elif m.role == 'assistant' %}{{- '<|assistant|>' + m.content }}{%- if not loop.last %}{{- '<|endofassistant|>' }}{%- endif %}{%- endif %}{%- endfor %}{%- if messages[-1].role != 'assistant' %}{{- '<|assistant|>' }}{%- endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DotsOCRForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_dots.DotsOCRConfig",
9
+ "AutoModelForCausalLM": "modeling_dots_ocr.DotsOCRForCausalLM"
10
+ },
11
+ "hidden_act": "silu",
12
+ "hidden_size": 1536,
13
+ "image_token_id": 151665,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 8960,
16
+ "max_position_embeddings": 131072,
17
+ "max_window_layers": 28,
18
+ "model_type": "dots_ocr",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 28,
21
+ "num_key_value_heads": 2,
22
+ "quantization_config": {
23
+ "_load_in_4bit": true,
24
+ "_load_in_8bit": false,
25
+ "bnb_4bit_compute_dtype": "bfloat16",
26
+ "bnb_4bit_quant_storage": "uint8",
27
+ "bnb_4bit_quant_type": "nf4",
28
+ "bnb_4bit_use_double_quant": true,
29
+ "llm_int8_enable_fp32_cpu_offload": false,
30
+ "llm_int8_has_fp16_weight": false,
31
+ "llm_int8_skip_modules": null,
32
+ "llm_int8_threshold": 6.0,
33
+ "load_in_4bit": true,
34
+ "load_in_8bit": false,
35
+ "quant_method": "bitsandbytes"
36
+ },
37
+ "rms_norm_eps": 1e-06,
38
+ "rope_scaling": null,
39
+ "rope_theta": 1000000,
40
+ "sliding_window": 131072,
41
+ "tie_word_embeddings": false,
42
+ "torch_dtype": "float16",
43
+ "transformers_version": "4.51.3",
44
+ "use_cache": true,
45
+ "use_sliding_window": false,
46
+ "video_token_id": 151656,
47
+ "vision_config": {
48
+ "_attn_implementation_autoset": true,
49
+ "attn_implementation": "flash_attention_2",
50
+ "embed_dim": 1536,
51
+ "gradient_checkpointing": false,
52
+ "hidden_size": 1536,
53
+ "init_merger_std": 0.02,
54
+ "initializer_range": 0.02,
55
+ "intermediate_size": 4224,
56
+ "is_causal": false,
57
+ "model_type": "dots_vit",
58
+ "num_attention_heads": 12,
59
+ "num_channels": 3,
60
+ "num_hidden_layers": 42,
61
+ "patch_size": 14,
62
+ "post_norm": true,
63
+ "rms_norm_eps": 1e-05,
64
+ "spatial_merge_size": 2,
65
+ "temporal_patch_size": 1,
66
+ "use_bias": false
67
+ },
68
+ "vocab_size": 151936
69
+ }
configuration_dots.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional
2
+ from transformers.configuration_utils import PretrainedConfig
3
+ from transformers.models.qwen2 import Qwen2Config
4
+ from transformers import Qwen2_5_VLProcessor, AutoProcessor
5
+ from transformers.models.auto.configuration_auto import CONFIG_MAPPING
6
+
7
+
8
+ class DotsVisionConfig(PretrainedConfig):
9
+ model_type: str = "dots_vit"
10
+
11
+ def __init__(
12
+ self,
13
+ embed_dim: int = 1536, # vision encoder embed size
14
+ hidden_size: int = 1536, # after merger hidden size
15
+ intermediate_size: int = 4224,
16
+ num_hidden_layers: int = 42,
17
+ num_attention_heads: int = 12,
18
+ num_channels: int = 3,
19
+ patch_size: int = 14,
20
+ spatial_merge_size: int = 2,
21
+ temporal_patch_size: int = 1,
22
+ rms_norm_eps: float = 1e-5,
23
+ use_bias: bool = False,
24
+ attn_implementation="flash_attention_2", # "eager","sdpa","flash_attention_2"
25
+ initializer_range=0.02,
26
+ init_merger_std=0.02,
27
+ is_causal=False, # ve causal forward
28
+ post_norm=True,
29
+ gradient_checkpointing=False,
30
+ **kwargs: Any,
31
+ ):
32
+ super().__init__(**kwargs)
33
+ self.embed_dim = embed_dim
34
+ self.hidden_size = hidden_size
35
+ self.intermediate_size = intermediate_size
36
+ self.num_hidden_layers = num_hidden_layers
37
+ self.num_attention_heads = num_attention_heads
38
+ self.num_channels = num_channels
39
+ self.patch_size = patch_size
40
+ self.spatial_merge_size = spatial_merge_size
41
+ self.temporal_patch_size = temporal_patch_size
42
+ self.rms_norm_eps = rms_norm_eps
43
+ self.use_bias = use_bias
44
+ self.attn_implementation = attn_implementation
45
+ self.initializer_range = initializer_range
46
+ self.init_merger_std = init_merger_std
47
+ self.is_causal = is_causal
48
+ self.post_norm = post_norm
49
+ self.gradient_checkpointing = gradient_checkpointing
50
+
51
+
52
+
53
+ class DotsOCRConfig(Qwen2Config):
54
+ model_type = "dots_ocr"
55
+ def __init__(self,
56
+ image_token_id = 151665,
57
+ video_token_id = 151656,
58
+ vision_config: Optional[dict] = None, *args, **kwargs):
59
+ super().__init__(*args, **kwargs)
60
+ self.image_token_id = image_token_id
61
+ self.video_token_id = video_token_id
62
+ self.vision_config = DotsVisionConfig(**(vision_config or {}))
63
+
64
+ def save_pretrained(self, save_directory, **kwargs):
65
+ self._auto_class = None
66
+ super().save_pretrained(save_directory, **kwargs)
67
+
68
+
69
+ class DotsVLProcessor(Qwen2_5_VLProcessor):
70
+ def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
71
+ super().__init__(image_processor, tokenizer, chat_template=chat_template)
72
+ self.image_token = "<|imgpad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
73
+
74
+
75
+ AutoProcessor.register("dots_ocr", DotsVLProcessor)
76
+ CONFIG_MAPPING.register("dots_ocr", DotsOCRConfig)
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151643,
4
+ 151673
5
+ ],
6
+ "max_length": 32768,
7
+ "transformers_version": "4.51.3"
8
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71df47a6a3dfc89048d6f4998a7b1585b5bf1d65423f7883590ce42935481ca7
3
+ size 2263132669
modeling_dots_ocr.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ from transformers.modeling_outputs import CausalLMOutputWithPast
5
+ from transformers.models.qwen2 import Qwen2ForCausalLM
6
+
7
+ from .configuration_dots import DotsVisionConfig, DotsOCRConfig
8
+ from .modeling_dots_vision import DotsVisionTransformer
9
+
10
+
11
+ DOTS_VLM_MAX_IMAGES = 200
12
+
13
+
14
+ class DotsOCRForCausalLM(Qwen2ForCausalLM):
15
+ config_class = DotsOCRConfig
16
+
17
+ def __init__(self, config: DotsOCRConfig):
18
+ super().__init__(config)
19
+
20
+ if isinstance(self.config.vision_config, dict):
21
+ vision_config = DotsVisionConfig(**self.config.vision_config)
22
+ self.config.vision_config = vision_config
23
+ else:
24
+ vision_config = self.config.vision_config
25
+
26
+ self.vision_tower = DotsVisionTransformer(vision_config)
27
+
28
+ def prepare_inputs_embeds(
29
+ self,
30
+ input_ids: torch.LongTensor,
31
+ pixel_values: Optional[torch.FloatTensor] = None,
32
+ grid_thw: Optional[torch.FloatTensor] = None,
33
+ img_mask: Optional[torch.BoolTensor] = None,
34
+ ) -> torch.Tensor:
35
+ inputs_embeds = self.get_input_embeddings()(input_ids)
36
+
37
+ if pixel_values is not None:
38
+ assert img_mask is not None
39
+ if grid_thw.shape[0] > DOTS_VLM_MAX_IMAGES:
40
+ print(
41
+ f"Num image exceeded: {grid_thw.shape[0]} > {DOTS_VLM_MAX_IMAGES}, which may cause FSDP hang"
42
+ )
43
+
44
+ vision_embeddings = self.vision_tower(pixel_values, grid_thw)
45
+
46
+ true_indices = torch.nonzero(img_mask).squeeze()
47
+ if len(true_indices) > vision_embeddings.size(0):
48
+ print(
49
+ f"img_mask sum > VE and will be truncated, mask.sum()={len(true_indices)} {vision_embeddings.size(0)=}"
50
+ )
51
+ true_indices = true_indices[: vision_embeddings.size(0)]
52
+ new_img_mask = torch.zeros_like(img_mask, device=img_mask.device)
53
+ new_img_mask[true_indices[:, 0], true_indices[:, 1]] = True
54
+ else:
55
+ new_img_mask = img_mask
56
+
57
+ assert (
58
+ vision_embeddings.size(0) == new_img_mask.sum()
59
+ ), f"{vision_embeddings.size(0)=}, {new_img_mask.sum()=}"
60
+
61
+ inputs_embeds = inputs_embeds.masked_scatter(
62
+ new_img_mask.to(inputs_embeds.device).unsqueeze(-1).expand_as(inputs_embeds),
63
+ vision_embeddings.to(inputs_embeds.device).type(inputs_embeds.dtype),
64
+ )
65
+
66
+ return inputs_embeds
67
+
68
+ def forward(
69
+ self,
70
+ input_ids: torch.LongTensor,
71
+ pixel_values: Optional[torch.FloatTensor] = None,
72
+ image_grid_thw: Optional[torch.FloatTensor] = None,
73
+ inputs_embeds: Optional[torch.Tensor] = None,
74
+ attention_mask: Optional[torch.Tensor] = None,
75
+ position_ids: Optional[torch.LongTensor] = None,
76
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
77
+ labels: Optional[torch.LongTensor] = None,
78
+ output_attentions: Optional[bool] = None,
79
+ output_hidden_states: Optional[bool] = None,
80
+ return_dict: Optional[bool] = None,
81
+ use_cache: Optional[bool] = None,
82
+ logits_to_keep: int = 0,
83
+ **loss_kwargs,
84
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
85
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
86
+ assert len(input_ids) >= 1, f"empty input_ids {input_ids.shape=} will cause gradnorm nan"
87
+ if inputs_embeds is None:
88
+ img_mask = input_ids == self.config.image_token_id
89
+ inputs_embeds = self.prepare_inputs_embeds(input_ids, pixel_values, image_grid_thw, img_mask)
90
+
91
+ outputs = super().forward(
92
+ inputs_embeds=inputs_embeds,
93
+ attention_mask=attention_mask,
94
+ position_ids=position_ids,
95
+ past_key_values=past_key_values,
96
+ labels=labels,
97
+ use_cache=use_cache if use_cache is not None else self.config.use_cache,
98
+ output_attentions=output_attentions,
99
+ output_hidden_states=output_hidden_states,
100
+ # return_dict=return_dict,
101
+ logits_to_keep=logits_to_keep,
102
+ **loss_kwargs,
103
+ )
104
+
105
+ return outputs
106
+
107
+ def prepare_inputs_for_generation(
108
+ self,
109
+ input_ids,
110
+ past_key_values=None,
111
+ inputs_embeds=None,
112
+ pixel_values=None,
113
+ attention_mask=None,
114
+ cache_position=None,
115
+ num_logits_to_keep=None,
116
+ **kwargs,
117
+ ):
118
+ model_inputs = super().prepare_inputs_for_generation(
119
+ input_ids,
120
+ past_key_values=past_key_values,
121
+ inputs_embeds=inputs_embeds,
122
+ attention_mask=attention_mask,
123
+ cache_position=cache_position,
124
+ num_logits_to_keep=num_logits_to_keep,
125
+ **kwargs,
126
+ )
127
+
128
+ if cache_position[0] == 0:
129
+ model_inputs["pixel_values"] = pixel_values
130
+
131
+ return model_inputs
modeling_dots_ocr_vllm.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import cached_property
2
+ from typing import Iterable, Literal, Mapping, Optional, Set, Tuple, TypedDict, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers.models.qwen2_vl import Qwen2VLImageProcessor, Qwen2VLProcessor
7
+ from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
8
+ from vllm import ModelRegistry
9
+ from vllm.config import VllmConfig
10
+ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
11
+ from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal
12
+ from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
13
+ from vllm.model_executor.models.qwen2_5_vl import (
14
+ Qwen2_5_VLMultiModalProcessor,
15
+ Qwen2_5_VLProcessingInfo,
16
+ )
17
+ from vllm.model_executor.models.qwen2_vl import Qwen2VLDummyInputsBuilder
18
+ from vllm.model_executor.models.utils import (
19
+ AutoWeightsLoader,
20
+ WeightsMapper,
21
+ init_vllm_registered_model,
22
+ maybe_prefix,
23
+ merge_multimodal_embeddings,
24
+ )
25
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
26
+ from vllm.multimodal import MULTIMODAL_REGISTRY
27
+ from vllm.multimodal.inputs import MultiModalDataDict
28
+ from vllm.multimodal.parse import ImageSize
29
+ from vllm.sequence import IntermediateTensors
30
+
31
+ from .configuration_dots import DotsVisionConfig
32
+ from .configuration_dots import DotsOCRConfig
33
+ from .modeling_dots_vision import DotsVisionTransformer
34
+
35
+
36
+ class DotsOCRImagePixelInputs(TypedDict):
37
+ type: Literal["pixel_values", "image_grid_thw"]
38
+
39
+ pixel_values: torch.Tensor
40
+ image_grid_thw: torch.Tensor
41
+
42
+
43
+ class DotsOCRImageEmbeddingInputs(TypedDict):
44
+ type: Literal["image_embeds", "image_grid_thw"]
45
+ image_embeds: torch.Tensor
46
+ """Supported types:
47
+ - List[`torch.Tensor`]: A list of tensors holding all images' features.
48
+ Each tensor holds an image's features.
49
+ - `torch.Tensor`: A tensor holding all images' features
50
+ (concatenation of all images' feature tensors).
51
+
52
+ Tensor shape: `(num_image_features, hidden_size)`
53
+ - `num_image_features` varies based on
54
+ the number and resolution of the images.
55
+ - `hidden_size` must match the hidden size of language model backbone.
56
+ """
57
+
58
+ image_grid_thw: torch.Tensor
59
+
60
+
61
+ DotsOCRImageInputs = Union[DotsOCRImagePixelInputs, DotsOCRImageEmbeddingInputs]
62
+
63
+
64
+ class DotsOCRMultiModalProcessor(Qwen2_5_VLMultiModalProcessor):
65
+ pass
66
+
67
+
68
+ class DotsOCRDummyInputsBuilder(Qwen2VLDummyInputsBuilder):
69
+ def get_dummy_mm_data(
70
+ self,
71
+ seq_len: int,
72
+ mm_counts: Mapping[str, int],
73
+ ) -> MultiModalDataDict:
74
+ num_images = mm_counts.get("image", 0)
75
+
76
+ target_width, target_height = self.info.get_image_size_with_most_features()
77
+
78
+ return {
79
+ "image": self._get_dummy_images(width=target_width, height=target_height, num_images=num_images),
80
+ }
81
+
82
+
83
+ class DotsOCRProcessingInfo(Qwen2_5_VLProcessingInfo):
84
+ def get_hf_config(self) -> DotsOCRConfig:
85
+ config = self.ctx.get_hf_config()
86
+ if not config.__class__.__name__ == 'DotsOCRConfig':
87
+ raise TypeError(f"Expected DotsOCRConfig, got {type(config)}")
88
+
89
+ if hasattr(config, "vision_config") and isinstance(config.vision_config, dict):
90
+ config.vision_config = DotsVisionConfig(**config.vision_config)
91
+
92
+ return config
93
+
94
+ def get_hf_processor(
95
+ self,
96
+ *,
97
+ min_pixels: Optional[int] = None,
98
+ max_pixels: Optional[int] = None,
99
+ size: Optional[dict[str, int]] = None,
100
+ **kwargs: object,
101
+ ) -> Qwen2VLProcessor:
102
+ processor = self.ctx.get_hf_processor(
103
+ Qwen2VLProcessor,
104
+ image_processor=self.get_image_processor(min_pixels=min_pixels, max_pixels=max_pixels, size=size),
105
+ **kwargs,
106
+ )
107
+ processor.image_token = "<|imgpad|>"
108
+ processor.video_token = "<|video_pad|>"
109
+ return processor
110
+
111
+ def _get_vision_info(
112
+ self,
113
+ *,
114
+ image_width: int,
115
+ image_height: int,
116
+ num_frames: int = 1,
117
+ do_resize: bool = True,
118
+ image_processor: Optional[Qwen2VLImageProcessor],
119
+ ) -> tuple[ImageSize, int]:
120
+ if image_processor is None:
121
+ image_processor = self.get_image_processor()
122
+
123
+ hf_config: DotsOCRConfig = self.get_hf_config()
124
+ vision_config = hf_config.vision_config
125
+ patch_size = vision_config.patch_size
126
+ merge_size = vision_config.spatial_merge_size
127
+ temporal_patch_size = vision_config.temporal_patch_size
128
+
129
+ if do_resize:
130
+ resized_height, resized_width = smart_resize(
131
+ height=image_height,
132
+ width=image_width,
133
+ factor=patch_size * merge_size,
134
+ min_pixels=image_processor.min_pixels,
135
+ max_pixels=image_processor.max_pixels,
136
+ )
137
+ preprocessed_size = ImageSize(width=resized_width, height=resized_height)
138
+ else:
139
+ preprocessed_size = ImageSize(width=image_width, height=image_height)
140
+
141
+ # NOTE: Frames are padded to be divisible by `temporal_patch_size`
142
+ # https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py#L294
143
+ padded_num_frames = num_frames + num_frames % temporal_patch_size
144
+
145
+ grid_t = max(padded_num_frames // temporal_patch_size, 1)
146
+ grid_h = preprocessed_size.height // patch_size
147
+ grid_w = preprocessed_size.width // patch_size
148
+
149
+ num_patches = grid_t * grid_h * grid_w
150
+ num_vision_tokens = num_patches // (merge_size**2)
151
+
152
+ return preprocessed_size, num_vision_tokens
153
+
154
+
155
+ @MULTIMODAL_REGISTRY.register_processor(
156
+ Qwen2_5_VLMultiModalProcessor,
157
+ info=DotsOCRProcessingInfo,
158
+ dummy_inputs=DotsOCRDummyInputsBuilder,
159
+ )
160
+ class DotsOCRForCausalLM(nn.Module, SupportsMultiModal):
161
+ hf_to_vllm_mapper = WeightsMapper(
162
+ orig_to_new_prefix={
163
+ "lm_head.": "language_model.lm_head.",
164
+ "model.": "language_model.model.",
165
+ }
166
+ )
167
+ _tp_plan = {}
168
+
169
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
170
+ super().__init__()
171
+
172
+ self.config: DotsOCRConfig = vllm_config.model_config.hf_config
173
+ self.quant_config = vllm_config.quant_config
174
+ self.multimodal_config = vllm_config.model_config.multimodal_config
175
+
176
+ if isinstance(self.config.vision_config, dict):
177
+ vision_config = DotsVisionConfig(**self.config.vision_config)
178
+ self.config.vision_config = vision_config
179
+ else:
180
+ vision_config = self.config.vision_config
181
+
182
+ self.vision_tower = DotsVisionTransformer(vision_config)
183
+ self.language_model: Qwen2ForCausalLM = init_vllm_registered_model(
184
+ vllm_config=vllm_config,
185
+ hf_config=self.config,
186
+ prefix=maybe_prefix(prefix, "language_model"),
187
+ architectures=["Qwen2ForCausalLM"],
188
+ )
189
+
190
+ @cached_property
191
+ def sampler(self):
192
+ if hasattr(self.language_model, "sampler"):
193
+ return self.language_model.sampler
194
+
195
+ return get_sampler()
196
+
197
+ def _validate_and_reshape_mm_tensor(self, mm_input: object, name: str) -> torch.Tensor:
198
+ if not isinstance(mm_input, (torch.Tensor, list)):
199
+ raise ValueError(f"Incorrect type of {name}. " f"Got type: {type(mm_input)}")
200
+ if isinstance(mm_input, torch.Tensor):
201
+ if mm_input.ndim == 2:
202
+ return mm_input
203
+ if mm_input.ndim != 3:
204
+ raise ValueError(
205
+ f"{name} should be 2D or batched 3D tensor. "
206
+ f"Got ndim: {mm_input.ndim} "
207
+ f"(shape={mm_input.shape})"
208
+ )
209
+ return torch.concat(list(mm_input))
210
+ else:
211
+ return torch.concat(mm_input)
212
+
213
+ def _parse_and_validate_image_input(self, **kwargs: object) -> Optional[DotsOCRImageInputs]:
214
+ pixel_values = kwargs.pop("pixel_values", None)
215
+ image_embeds = kwargs.pop("image_embeds", None)
216
+ image_grid_thw = kwargs.pop("image_grid_thw", None)
217
+
218
+ if pixel_values is None and image_embeds is None:
219
+ return None
220
+
221
+ if pixel_values is not None:
222
+ pixel_values = self._validate_and_reshape_mm_tensor(pixel_values, "image pixel values")
223
+ image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
224
+
225
+ if not isinstance(pixel_values, (torch.Tensor, list)):
226
+ raise ValueError("Incorrect type of image pixel values. " f"Got type: {type(pixel_values)}")
227
+
228
+ return DotsOCRImagePixelInputs(
229
+ type="pixel_values", pixel_values=pixel_values, image_grid_thw=image_grid_thw
230
+ )
231
+
232
+ if image_embeds is not None:
233
+ image_embeds = self._validate_and_reshape_mm_tensor(image_embeds, "image embeds")
234
+ image_grid_thw = self._validate_and_reshape_mm_tensor(image_grid_thw, "image grid_thw")
235
+
236
+ if not isinstance(image_embeds, torch.Tensor):
237
+ raise ValueError("Incorrect type of image embeddings. " f"Got type: {type(image_embeds)}")
238
+ return DotsOCRImageEmbeddingInputs(
239
+ type="image_embeds", image_embeds=image_embeds, image_grid_thw=image_grid_thw
240
+ )
241
+
242
+ def vision_forward(self, pixel_values: torch.Tensor, image_grid_thw: torch.Tensor):
243
+ from vllm.distributed import (
244
+ get_tensor_model_parallel_group,
245
+ get_tensor_model_parallel_rank,
246
+ get_tensor_model_parallel_world_size,
247
+ )
248
+
249
+ assert self.vision_tower is not None
250
+
251
+ tp_rank = get_tensor_model_parallel_rank()
252
+ tp = get_tensor_model_parallel_world_size()
253
+
254
+ image_grid_thw_chunk = image_grid_thw.chunk(tp)
255
+ image_sizes_consum = torch.tensor([i.prod(-1).sum() for i in image_grid_thw_chunk]).cumsum(dim=0)
256
+ merge_size_square = self.vision_tower.config.spatial_merge_size**2
257
+ image_embedding = torch.zeros(
258
+ (
259
+ pixel_values.shape[0] // merge_size_square,
260
+ self.vision_tower.config.hidden_size,
261
+ ),
262
+ device=pixel_values.device,
263
+ dtype=pixel_values.dtype,
264
+ )
265
+
266
+ if tp_rank < len(image_sizes_consum):
267
+ idx_start = 0 if tp_rank == 0 else image_sizes_consum[tp_rank - 1].item()
268
+ idx_end = image_sizes_consum[tp_rank].item()
269
+ pixel_values_part = pixel_values[idx_start:idx_end]
270
+ image_grid_thw_part = image_grid_thw_chunk[tp_rank]
271
+ image_embedding_part = self.vision_tower(pixel_values_part, image_grid_thw_part)
272
+ image_embedding[idx_start // merge_size_square : idx_end // merge_size_square] = image_embedding_part
273
+
274
+ group = get_tensor_model_parallel_group().device_group
275
+ torch.distributed.all_reduce(image_embedding, group=group)
276
+ return image_embedding
277
+
278
+ def _process_image_input(self, image_input: DotsOCRImageInputs) -> tuple[torch.Tensor, ...]:
279
+ grid_thw = image_input["image_grid_thw"]
280
+ assert grid_thw.ndim == 2
281
+
282
+ if image_input["type"] == "image_embeds":
283
+ image_embeds = image_input["image_embeds"].type(self.vision_tower.dtype)
284
+ else:
285
+ pixel_values = image_input["pixel_values"].type(self.vision_tower.dtype)
286
+ image_embeds = self.vision_forward(pixel_values, grid_thw)[
287
+ :, : self.config.hidden_size
288
+ ]
289
+
290
+ # Split concatenated embeddings for each image item.
291
+ merge_size = self.vision_tower.config.spatial_merge_size
292
+ sizes = grid_thw.prod(-1) // merge_size // merge_size
293
+
294
+ return image_embeds.split(sizes.tolist())
295
+
296
+ def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
297
+ modalities = {}
298
+
299
+ # Preserve the order of modalities if there are multiple of them
300
+ # from the order of kwargs.
301
+ for input_key in kwargs:
302
+ if input_key in ("pixel_values", "image_embeds") and "images" not in modalities:
303
+ modalities["images"] = self._parse_and_validate_image_input(**kwargs)
304
+ return modalities
305
+
306
+ def get_language_model(self) -> torch.nn.Module:
307
+ return self.language_model
308
+
309
+ def get_multimodal_embeddings(self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
310
+ modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
311
+ if not modalities:
312
+ return None
313
+
314
+ # The result multimodal_embeddings is tuple of tensors, with each
315
+ # tensor correspoending to a multimodal data item (image or video).
316
+ multimodal_embeddings: tuple[torch.Tensor, ...] = ()
317
+
318
+ # NOTE: It is important to iterate over the keys in this dictionary
319
+ # to preserve the order of the modalities.
320
+ for modality in modalities:
321
+ if modality == "images":
322
+ image_input = modalities["images"]
323
+ vision_embeddings = self._process_image_input(image_input)
324
+ multimodal_embeddings += vision_embeddings
325
+
326
+ return multimodal_embeddings
327
+
328
+ def get_input_embeddings(
329
+ self,
330
+ input_ids: torch.Tensor,
331
+ multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
332
+ ) -> torch.Tensor:
333
+ inputs_embeds = self.language_model.get_input_embeddings(input_ids)
334
+ if multimodal_embeddings is not None:
335
+ inputs_embeds = merge_multimodal_embeddings(
336
+ input_ids,
337
+ inputs_embeds,
338
+ multimodal_embeddings,
339
+ [self.config.image_token_id, self.config.video_token_id],
340
+ )
341
+
342
+ return inputs_embeds
343
+
344
+ def get_input_embeddings_v0(
345
+ self,
346
+ input_ids: torch.Tensor,
347
+ image_input: Optional[DotsOCRImagePixelInputs] = None,
348
+ ) -> torch.Tensor:
349
+ inputs_embeds = self.get_input_embeddings(input_ids)
350
+ if image_input is not None:
351
+ image_embeds = self._process_image_input(image_input)
352
+ inputs_embeds = merge_multimodal_embeddings(
353
+ input_ids,
354
+ inputs_embeds,
355
+ image_embeds,
356
+ placeholder_token_id=self.config.image_token_id,
357
+ )
358
+ return inputs_embeds
359
+
360
+ def forward(
361
+ self,
362
+ input_ids: Optional[torch.Tensor],
363
+ positions: torch.Tensor,
364
+ intermediate_tensors: Optional[IntermediateTensors] = None,
365
+ inputs_embeds: Optional[torch.Tensor] = None,
366
+ **kwargs,
367
+ ) -> Union[torch.Tensor, IntermediateTensors]:
368
+ if intermediate_tensors is not None:
369
+ inputs_embeds = None
370
+ elif inputs_embeds is None and kwargs.get("pixel_values") is not None:
371
+ image_input = self._parse_and_validate_image_input(**kwargs)
372
+ if image_input is None:
373
+ inputs_embeds = None
374
+ else:
375
+ assert input_ids is not None
376
+ inputs_embeds = self.get_input_embeddings_v0(
377
+ input_ids,
378
+ image_input=image_input,
379
+ )
380
+ input_ids = None
381
+
382
+ hidden_states = self.language_model(
383
+ input_ids=input_ids,
384
+ positions=positions,
385
+ intermediate_tensors=intermediate_tensors,
386
+ inputs_embeds=inputs_embeds,
387
+ )
388
+
389
+ return hidden_states
390
+
391
+ def compute_logits(
392
+ self,
393
+ hidden_states: torch.Tensor,
394
+ sampling_metadata: SamplingMetadata,
395
+ ) -> Optional[torch.Tensor]:
396
+ return self.language_model.compute_logits(hidden_states, sampling_metadata)
397
+
398
+ def sample(
399
+ self,
400
+ logits: Optional[torch.Tensor],
401
+ sampling_metadata: SamplingMetadata,
402
+ ) -> Optional[SamplerOutput]:
403
+ next_tokens = self.sampler(logits, sampling_metadata)
404
+ return next_tokens
405
+
406
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
407
+ loader = AutoWeightsLoader(self)
408
+ return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
409
+
410
+
411
+ def patch_vllm_chat_placeholder():
412
+ from vllm.entrypoints.chat_utils import BaseMultiModalItemTracker
413
+
414
+ ori = BaseMultiModalItemTracker._placeholder_str
415
+
416
+ def _placeholder_str(self, modality, current_count: int) -> Optional[str]:
417
+ hf_config = self._model_config.hf_config
418
+ model_type = hf_config.model_type
419
+ if modality in ("image",) and model_type in ["dots_ocr"]:
420
+ return "<|img|><|imgpad|><|endofimg|>"
421
+ return ori(self, modality, current_count)
422
+
423
+ BaseMultiModalItemTracker._placeholder_str = _placeholder_str
424
+
425
+ ModelRegistry.register_model(
426
+ "DotsOCRForCausalLM", DotsOCRForCausalLM,
427
+ )
428
+
429
+ patch_vllm_chat_placeholder()
modeling_dots_vision.py ADDED
@@ -0,0 +1,404 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ import torch.utils.checkpoint
7
+ from flash_attn import flash_attn_varlen_func
8
+ from torch.nn import LayerNorm
9
+ from transformers.modeling_utils import PreTrainedModel
10
+ from .configuration_dots import DotsVisionConfig
11
+
12
+
13
+ def rotate_half(x):
14
+ """Rotates half the hidden dims of the input."""
15
+ x1 = x[..., : x.shape[-1] // 2]
16
+ x2 = x[..., x.shape[-1] // 2 :]
17
+ return torch.cat((-x2, x1), dim=-1)
18
+
19
+
20
+ def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
21
+ orig_dtype = tensor.dtype
22
+ tensor = tensor.float()
23
+
24
+ cos = freqs.cos()
25
+ sin = freqs.sin()
26
+
27
+ cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
28
+ sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
29
+
30
+ output = (tensor * cos) + (rotate_half(tensor) * sin)
31
+
32
+ output = output.to(orig_dtype)
33
+
34
+ return output
35
+
36
+
37
+ class VisionRotaryEmbedding(nn.Module):
38
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
39
+ super().__init__()
40
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
41
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
42
+
43
+ def forward(self, seqlen: int) -> torch.Tensor:
44
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
45
+ freqs = torch.outer(seq, self.inv_freq)
46
+ return freqs
47
+
48
+
49
+ class PatchMerger(nn.Module):
50
+ def __init__(
51
+ self,
52
+ dim: int,
53
+ context_dim: int,
54
+ spatial_merge_size: int = 2,
55
+ pre_norm="layernorm",
56
+ init_merger_std=None,
57
+ ) -> None:
58
+ super().__init__()
59
+ self.hidden_size = context_dim * (spatial_merge_size**2)
60
+ self.pre_norm = pre_norm
61
+ if self.pre_norm == "layernorm":
62
+ self.ln_q = LayerNorm(context_dim, eps=1e-6)
63
+ elif self.pre_norm == "rmsnorm":
64
+ self.ln_q = RMSNorm(context_dim, eps=1e-6)
65
+ else:
66
+ print("no norm in patch merger")
67
+
68
+ self.mlp = nn.Sequential(
69
+ nn.Linear(self.hidden_size, self.hidden_size),
70
+ nn.GELU(),
71
+ nn.Linear(self.hidden_size, dim),
72
+ )
73
+
74
+ if init_merger_std is not None:
75
+ nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
76
+ nn.init.zeros_(self.mlp[0].bias)
77
+ nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
78
+ nn.init.zeros_(self.mlp[2].bias)
79
+
80
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
81
+ if self.pre_norm:
82
+ x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
83
+ else:
84
+ x = self.mlp(x.view(-1, self.hidden_size))
85
+ return x
86
+
87
+
88
+ class VisionAttention(nn.Module):
89
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
90
+ super().__init__()
91
+ self.num_heads = num_heads
92
+ self.head_dim = dim // num_heads
93
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
94
+ self.proj = nn.Linear(dim, dim, bias=bias)
95
+
96
+ def forward(
97
+ self,
98
+ hidden_states: torch.Tensor,
99
+ cu_seqlens: torch.Tensor,
100
+ rotary_pos_emb: torch.Tensor = None,
101
+ ) -> torch.Tensor:
102
+ seq_length = hidden_states.shape[0]
103
+
104
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
105
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
106
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
107
+
108
+ attention_mask = torch.full(
109
+ [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
110
+ )
111
+ for i in range(1, len(cu_seqlens)):
112
+ attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
113
+
114
+ q = q.transpose(0, 1)
115
+ k = k.transpose(0, 1)
116
+ v = v.transpose(0, 1)
117
+ attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
118
+ attn_weights = attn_weights + attention_mask
119
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
120
+ attn_output = torch.matmul(attn_weights, v)
121
+ attn_output = attn_output.transpose(0, 1)
122
+ attn_output = attn_output.reshape(seq_length, -1)
123
+ attn_output = self.proj(attn_output)
124
+ return attn_output
125
+
126
+
127
+ class VisionFlashAttention2(nn.Module):
128
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
129
+ super().__init__()
130
+ self.num_heads = num_heads
131
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
132
+ self.proj = nn.Linear(dim, dim, bias=bias)
133
+ self.config = config
134
+ self.is_causal = config.is_causal
135
+
136
+ def forward(
137
+ self,
138
+ hidden_states: torch.Tensor,
139
+ cu_seqlens: torch.Tensor,
140
+ rotary_pos_emb: torch.Tensor = None,
141
+ ) -> torch.Tensor:
142
+ seq_length = hidden_states.shape[0]
143
+ q, k, v = (
144
+ self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
145
+ ) # 'shd'
146
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
147
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
148
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
149
+ attn_output = flash_attn_varlen_func(
150
+ q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, causal=self.is_causal
151
+ ).reshape(seq_length, -1)
152
+ attn_output = self.proj(attn_output)
153
+
154
+ return attn_output
155
+
156
+
157
+ class VisionSdpaAttention(nn.Module):
158
+ def __init__(self, config, dim: int, num_heads: int = 16, bias=True) -> None:
159
+ super().__init__()
160
+ self.num_heads = num_heads
161
+ self.qkv = nn.Linear(dim, dim * 3, bias=bias)
162
+ self.proj = nn.Linear(dim, dim, bias=bias)
163
+ self.config = config
164
+
165
+ def forward(
166
+ self,
167
+ hidden_states: torch.Tensor,
168
+ cu_seqlens: torch.Tensor,
169
+ rotary_pos_emb: torch.Tensor = None,
170
+ ) -> torch.Tensor:
171
+ seq_length = hidden_states.shape[0]
172
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
173
+
174
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
175
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
176
+
177
+ attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
178
+ for i in range(1, len(cu_seqlens)):
179
+ attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
180
+
181
+ q = q.transpose(0, 1)
182
+ k = k.transpose(0, 1)
183
+ v = v.transpose(0, 1)
184
+
185
+ attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
186
+ attn_output = attn_output.transpose(0, 1)
187
+ attn_output = attn_output.reshape(seq_length, -1)
188
+
189
+ attn_output = self.proj(attn_output)
190
+ return attn_output
191
+
192
+
193
+ DOTS_VISION_ATTENTION_CLASSES = {
194
+ "eager": VisionAttention,
195
+ "flash_attention_2": VisionFlashAttention2,
196
+ "sdpa": VisionSdpaAttention,
197
+ }
198
+
199
+
200
+ class RMSNorm(nn.Module):
201
+ def __init__(self, dim: int, eps: float = 1e-6):
202
+ super().__init__()
203
+ self.weight = nn.Parameter(torch.ones(dim))
204
+ self.eps = eps
205
+
206
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
207
+ output = self._norm(x.float()).type_as(x)
208
+ return output * self.weight
209
+
210
+ def extra_repr(self) -> str:
211
+ return f"{tuple(self.weight.shape)}, eps={self.eps}"
212
+
213
+ def _norm(self, x: torch.Tensor) -> torch.Tensor:
214
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
215
+
216
+
217
+ class DotsSwiGLUFFN(nn.Module):
218
+ def __init__(self, config):
219
+ super().__init__()
220
+ hidden_features = config.intermediate_size
221
+ in_features = config.embed_dim
222
+ bias = config.use_bias
223
+
224
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
225
+ self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
226
+ self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
227
+
228
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
229
+ x = F.silu(self.fc1(x)) * self.fc3(x)
230
+ x = self.fc2(x)
231
+ return x
232
+
233
+
234
+
235
+ class DotsPatchEmbed(nn.Module):
236
+ def __init__(self, config):
237
+ super().__init__()
238
+ self.num_channels = config.num_channels
239
+ self.patch_size = config.patch_size
240
+ self.temporal_patch_size = config.temporal_patch_size
241
+ self.embed_dim = config.embed_dim
242
+ self.config = config
243
+ self.proj = nn.Conv2d(
244
+ config.num_channels,
245
+ config.embed_dim,
246
+ kernel_size=(config.patch_size, config.patch_size),
247
+ stride=(config.patch_size, config.patch_size),
248
+ )
249
+ self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
250
+
251
+ def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
252
+ x = x.view(-1, self.num_channels, self.temporal_patch_size, self.patch_size, self.patch_size)[:, :, 0]
253
+ x = self.proj(x).view(-1, self.embed_dim)
254
+ x = self.norm(x)
255
+ return x
256
+
257
+
258
+ class DotsViTPreprocessor(nn.Module):
259
+ def __init__(self, config):
260
+ super().__init__()
261
+ self.patch_h = config.patch_size
262
+ self.patch_w = config.patch_size
263
+ self.embed_dim = config.embed_dim
264
+ self.config = config
265
+ self.patchifier = DotsPatchEmbed(config)
266
+
267
+ def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
268
+ tokens = self.patchifier(x, grid_thw)
269
+ return tokens
270
+
271
+
272
+ class DotsVisionBlock(nn.Module):
273
+ def __init__(self, config, attn_implementation: str = "flash_attention_2"):
274
+ super().__init__()
275
+ self.attn = DOTS_VISION_ATTENTION_CLASSES[attn_implementation](
276
+ config, config.embed_dim, num_heads=config.num_attention_heads, bias=config.use_bias
277
+ )
278
+ self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
279
+ self.mlp = DotsSwiGLUFFN(config)
280
+ self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
281
+
282
+ def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
283
+ hidden_states = hidden_states + self.attn(
284
+ self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
285
+ )
286
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
287
+ return hidden_states
288
+
289
+
290
+ class DotsVisionTransformer(PreTrainedModel):
291
+ def __init__(self, config: DotsVisionConfig) -> None:
292
+ super().__init__(config)
293
+ self.config = config
294
+ self.spatial_merge_size = config.spatial_merge_size
295
+
296
+ self.patch_embed = DotsViTPreprocessor(config)
297
+ self._init_weights(self.patch_embed.patchifier.proj)
298
+
299
+ head_dim = config.embed_dim // config.num_attention_heads
300
+
301
+ self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
302
+
303
+ _num_hidden_layers = config.num_hidden_layers
304
+ self.blocks = nn.ModuleList(
305
+ [DotsVisionBlock(config, config.attn_implementation) for _ in range(_num_hidden_layers)]
306
+ )
307
+
308
+ if self.config.post_norm:
309
+ self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
310
+
311
+ self.merger = PatchMerger(
312
+ dim=config.hidden_size,
313
+ context_dim=config.embed_dim,
314
+ spatial_merge_size=config.spatial_merge_size,
315
+ init_merger_std=self.config.init_merger_std,
316
+ )
317
+
318
+ self.gradient_checkpointing = False
319
+ self._gradient_checkpointing_func = torch.utils.checkpoint.checkpoint
320
+
321
+ def _init_weights(self, module):
322
+ std = self.config.initializer_range
323
+ if isinstance(module, (nn.Linear, nn.Conv3d)):
324
+ module.weight.data.normal_(mean=0.0, std=std)
325
+ if module.bias is not None:
326
+ module.bias.data.zero_()
327
+ elif isinstance(module, nn.Embedding):
328
+ module.weight.data.normal_(mean=0.0, std=std)
329
+ if module.padding_idx is not None:
330
+ module.weight.data[module.padding_idx].zero_()
331
+
332
+ @property
333
+ def dtype(self) -> torch.dtype:
334
+ return self.blocks[0].mlp.fc2.weight.dtype
335
+
336
+ @property
337
+ def device(self) -> torch.device:
338
+ return self.blocks[0].mlp.fc2.weight.device
339
+
340
+ def get_pos_ids_by_grid(self, grid_thw):
341
+ pos_ids = []
342
+ for t, h, w in grid_thw:
343
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
344
+ hpos_ids = hpos_ids.reshape(
345
+ h // self.spatial_merge_size,
346
+ self.spatial_merge_size,
347
+ w // self.spatial_merge_size,
348
+ self.spatial_merge_size,
349
+ )
350
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
351
+ hpos_ids = hpos_ids.flatten()
352
+
353
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
354
+ wpos_ids = wpos_ids.reshape(
355
+ h // self.spatial_merge_size,
356
+ self.spatial_merge_size,
357
+ w // self.spatial_merge_size,
358
+ self.spatial_merge_size,
359
+ )
360
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
361
+ wpos_ids = wpos_ids.flatten()
362
+ pos_ids.append(
363
+ torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)
364
+ )
365
+
366
+ return pos_ids
367
+
368
+ def rot_pos_emb(self, grid_thw):
369
+ pos_ids = self.get_pos_ids_by_grid(grid_thw)
370
+ pos_ids = torch.cat(pos_ids, dim=0)
371
+ max_grid_size = grid_thw[:, 1:].max()
372
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
373
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
374
+ return rotary_pos_emb
375
+
376
+ def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True) -> torch.Tensor:
377
+ if bf16:
378
+ hidden_states = hidden_states.bfloat16()
379
+ hidden_states = self.patch_embed(hidden_states, grid_thw)
380
+
381
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
382
+
383
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
384
+ dim=0,
385
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
386
+ )
387
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
388
+
389
+ for blk in self.blocks:
390
+ if self.gradient_checkpointing and self.training:
391
+ hidden_states = self._gradient_checkpointing_func(
392
+ blk.__call__,
393
+ hidden_states,
394
+ cu_seqlens,
395
+ rotary_pos_emb,
396
+ )
397
+ else:
398
+ hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
399
+
400
+ if self.config.post_norm:
401
+ hidden_states = self.post_trunk_norm(hidden_states)
402
+
403
+ hidden_states = self.merger(hidden_states)
404
+ return hidden_states
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 11289600,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "DotsVLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 11289600,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 1
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "[PAD]",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:904d81ff0cfa066dbc0b6a21e10ded6ebb7c2d8df14100d851f90bb7878bd5de
3
+ size 11426251
tokenizer_config.json ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|imgpad|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|img|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "151667": {
198
+ "content": "<|endofimg|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "151668": {
206
+ "content": "<|systemprompt|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "151669": {
214
+ "content": "<|endofsystemprompt|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "151670": {
222
+ "content": "<|user|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "151671": {
230
+ "content": "<|endofuser|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "151672": {
238
+ "content": "<|assistant|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "151673": {
246
+ "content": "<|endofassistant|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "151674": {
254
+ "content": "<|ref_start|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "151675": {
262
+ "content": "<|ref_end|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "151676": {
270
+ "content": "[SEP]",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "151677": {
278
+ "content": "<|pic|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "151678": {
286
+ "content": "<|text|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "151679": {
294
+ "content": "<|pictotext|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "151680": {
302
+ "content": "[PAD]",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "151681": {
310
+ "content": "<|slice|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "151682": {
318
+ "content": "<|endofslice|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "151683": {
326
+ "content": "<|imgrowend|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "151684": {
334
+ "content": "<|polygon_start|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "151685": {
342
+ "content": "<|polygon_end|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "151686": {
350
+ "content": "<|image_gen_start|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "151687": {
358
+ "content": "<|image_gen_end|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ }
365
+ },
366
+ "additional_special_tokens": [
367
+ "<|im_start|>",
368
+ "<|im_end|>",
369
+ "<|object_ref_start|>",
370
+ "<|object_ref_end|>",
371
+ "<|box_start|>",
372
+ "<|box_end|>",
373
+ "<|quad_start|>",
374
+ "<|quad_end|>",
375
+ "<|vision_start|>",
376
+ "<|vision_end|>",
377
+ "<|vision_pad|>",
378
+ "<|image_pad|>",
379
+ "<|video_pad|>"
380
+ ],
381
+ "bos_token": null,
382
+ "chat_template": "{%- for m in messages %}\n {%- if m.role == 'system' %}\n {{- '<|system|>' + m.content + '<|endofsystem|>\\n' }}\n {%- elif m.role == 'user' %}\n {{- '<|user|>' + m.content + '<|endofuser|>' }}\n {%- elif m.role == 'assistant' %}\n {{- '<|assistant|>' + m.content }}\n {%- if not loop.last %}\n {{- '<|endofassistant|>' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if messages[-1].role != 'assistant' %}\n {{- '<|assistant|>' }}\n{%- endif %}",
383
+ "clean_up_tokenization_spaces": false,
384
+ "eos_token": "<|endoftext|>",
385
+ "errors": "replace",
386
+ "extra_special_tokens": {},
387
+ "model_max_length": 131072,
388
+ "pad_token": "[PAD]",
389
+ "processor_class": "DotsVLProcessor",
390
+ "split_special_tokens": false,
391
+ "tokenizer_class": "Qwen2Tokenizer",
392
+ "unk_token": null
393
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff