File size: 22,961 Bytes
6b4df6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from transformers import LlavaForConditionalGeneration,PretrainedConfig
from configuration_bit_vla import Bitvla_Config
import numpy as np
import torch
from prismatic.vla.constants import (
    ACTION_DIM,
    ACTION_PROPRIO_NORMALIZATION_TYPE,
    NUM_ACTIONS_CHUNK,
    NormalizationType,
)
from typing import Optional, Dict, Any,List,Tuple

from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast

from prismatic.training.train_utils import (
    get_current_action_mask,
    get_next_actions_mask,
)


class BitVLAForActionPrediction(LlavaForConditionalGeneration):
    config_class: PretrainedConfig = Bitvla_Config

    def __init__(self, config) -> None:
        super().__init__(config)
        self.norm_stats = config.norm_stats

        # Compute action bins
        self.bins = np.linspace(-1, 1, config.n_action_bins)
        self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0

        self.vocab_size = self.config.vocab_size

    def set_constant(self, image_token_idx, proprio_pad_idx, ignore_idx, action_token_begin_idx, stop_index):
        self.image_token_idx = image_token_idx
        self.proprio_pad_idx = proprio_pad_idx
        self.action_token_begin_idx = action_token_begin_idx
        self.stop_index = stop_index
        self.ignore_idx = ignore_idx
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_projector_features: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        proprio=None,
        proprio_projector=None,
        cache_position: Optional[torch.LongTensor] = None,
        vision_feature_layer=None,
        vision_feature_select_strategy=None,
        ) -> Tuple[int, LlavaCausalLMOutputWithPast]:
        """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        output_projector_features = output_projector_features if output_projector_features is not None else False
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
        use_cache = use_cache and not self.training

        batch_size = input_ids.shape[0] if input_ids is not None else inputs_embeds.shape[0] # type: ignore

        # === Handle Multimodal Forward ===
        if (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
            assert past_key_values is None, "Unexpected key `past_key_values` provided during multimodal forward!"

            # Get input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)  # (B, seq_len, D)
            
            # change the vision padding to the real vision tokens
            if pixel_values is not None:
                vision_feature_layer = (
                    vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
                )
                vision_feature_select_strategy = (
                    vision_feature_select_strategy
                    if vision_feature_select_strategy is not None
                    else self.config.vision_feature_select_strategy
                )
                # pixel_values: b,num_images,c,h,w
                # for each image, we do self.get_image_features
                # then we concat the features of all images
                # pixel_values: (b,num_images,c,h,w) --> (b*num_images,c,h,w)
                b, num_images, c, h, w = pixel_values.shape
                pixel_values = pixel_values.view(-1, c, h, w)  # (b*num_images,c,h,w)
                image_embeds = self.get_image_features(
                    pixel_values = pixel_values,
                    vision_feature_layer = vision_feature_layer,
                    vision_feature_select_strategy = vision_feature_select_strategy,
                )
                
                # image_features: (b*num_images,seq_len,patch_size) --> (b*num_images*seq_len,patch_size)
                image_embeds = image_embeds.view(-1,image_embeds.shape[-1])
                n_image_tokens = (input_ids == self.image_token_idx).sum().item()
                n_image_features = image_embeds.shape[0]
                if n_image_tokens != n_image_features:
                    raise ValueError(
                        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                    )

                mask = input_ids == self.image_token_idx
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                image_mask = mask_expanded.to(inputs_embeds.device)

                image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
                
                
            # change the proprio padding to the real proprio tokens
            if proprio_projector is not None and proprio is not None:
                # proprio: (bsz, proprio_dim) or (propro_dim,)
                proprio = proprio.reshape(batch_size, -1)  # (bsz, proprio_dim)
                proprio_features = proprio_projector(proprio)  # (bsz, llm_dim)
                proprio_features = proprio_features.unsqueeze(dim=1)  # (bsz, 1, llm_dim)
                #(bsz, 1, llm_dim) --> (bsz*1, llm_dim)
                proprio_features = proprio_features.view(-1, proprio_features.shape[-1])
                n_proprio_tokens = (input_ids == self.proprio_pad_idx).sum().item()
                n_proprio_features = proprio_features.shape[0]
                if n_proprio_tokens != n_proprio_features:
                    raise ValueError(
                        f"Proprio features and proprio tokens do not match: tokens: {n_proprio_tokens}, features {n_proprio_features}"
                    )
                
                mask = input_ids == self.proprio_pad_idx
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
                proprio_mask = mask_expanded.to(inputs_embeds.device)
                
                proprio_features = proprio_features.to(inputs_embeds.device, inputs_embeds.dtype)
                inputs_embeds = inputs_embeds.masked_scatter(proprio_mask, proprio_features)
                
            
            # Extract action masks
            # Action tokens are those in labels that are not ignore, not newline, and not end-of-sequence tokens
            all_actions_mask = (labels != self.ignore_idx) & (labels != self.stop_index)
          
            # Replace the embeddings of the action tokens with zeros
            # (Later on, the positional embeddings will be added to them)
            all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
            inputs_embeds = inputs_embeds * ~all_actions_mask 
            outputs = LlavaForConditionalGeneration.forward(
                self,
                input_ids = None,
                attention_mask=attention_mask,
                position_ids=None,
                pixel_values=None,
                labels=labels,
                inputs_embeds=inputs_embeds,
                past_key_values=None,
                use_cache=None,
                output_attentions=False,
                output_hidden_states=True,
                return_dict=True,
            )
        # === Otherwise =>> Assume Invalid! ===
        elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
            raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")

        else:
            raise ValueError(
                "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
                f"=> `input_ids` = {input_ids is not None}\n"
                f"=> `attention_mask` = {attention_mask is not None}\n"
                f"=> `pixel_values` = {pixel_values is not None}\n"
                f"=> `labels` = {labels is not None}\n"
                f"=> `input_embeds` = {inputs_embeds is not None}\n"
                f"=> `past_key_values` = {past_key_values is not None}\n"
                f"=> `use_cache` = {use_cache}"
            )

        return outputs

    def _prepare_input_for_action_prediction(self, input_ids, attention_mask):
        """Prepares input for action prediction by adding necessary tokens"""
        # Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
        placeholder_action_token_ids = (
            torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
        )
        input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

        # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
        stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * self.stop_index
        input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

        # Extend the attention mask to fit the new shape of input
        # Note: Only batch size == 1 supported right now
        mask_extension = (
            torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
            .to(attention_mask.device)
            .to(attention_mask.dtype)
        )
        attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

        return input_ids, attention_mask

    def _prepare_labels_for_action_prediction(self, labels, input_ids):
        """Creates labels tensor for action prediction if not provided"""
        # Extend labels tensor with fake action labels
        ARBITRARY_ACTION_TOKEN_IDX = self.action_token_begin_idx + 1
        labels_extension = (
            torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
            * ARBITRARY_ACTION_TOKEN_IDX
        )
        labels = torch.cat([labels, labels_extension], dim=-1)

        # Replace last label token with stop token
        labels[:, -1] = self.stop_index

        return labels

    def _process_action_masks(self, labels):
        """Helper to get action masks from labels"""
        current_action_mask = get_current_action_mask(labels,ignore_index=self.ignore_idx,action_token_begin_idx=self.action_token_begin_idx)
        next_actions_mask = get_next_actions_mask(labels,ignore_index=self.ignore_idx,action_token_begin_idx=self.action_token_begin_idx)
        all_actions_mask = current_action_mask | next_actions_mask  # (B, seq_len)
        return all_actions_mask
        
    def _unnormalize_actions(self, normalized_actions, unnorm_key=None):
        """Unnormalize actions using dataset statistics"""
        action_norm_stats = self.get_action_stats(unnorm_key)

        if ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["min"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["max"]), np.array(action_norm_stats["min"])
        elif ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS_Q99:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
        else:
            raise ValueError("Unsupported action/proprio normalization type detected!")

        actions = np.where(
            mask,
            0.5 * (normalized_actions + 1) * (action_high - action_low + 1e-8) + action_low,
            normalized_actions,
        )

        return actions
    
    def _regression_or_discrete_prediction(
        self,
        input_ids,
        input_embeddings,
        all_actions_mask,
        attention_mask,
        labels,
        action_head=None,
        pixel_values = None,
    ):
        """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
        # Zero out action token embeddings
        all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
        input_embeddings = input_embeddings * ~all_actions_mask

        llava_output = LlavaForConditionalGeneration.forward(
                self,
                input_ids = None,
                attention_mask=attention_mask,
                position_ids=None,
                pixel_values=None,
                labels=None,
                inputs_embeds=input_embeddings,
                past_key_values=None,
                use_cache=None,
                output_attentions=False,
                output_hidden_states=True,
                return_dict=True,
            )
        all_actions_mask = self._process_action_masks(labels[:,1:])
        # Extract hidden states for action tokens
        last_hidden_states = llava_output.hidden_states[-1]  # (B, seq_len, D)
        last_hidden_states = last_hidden_states[:, : -1, :]  # (B, act_chunk_len, D)
        # Use the action mask to extract the hidden states of the actions
        actions_hidden_states = last_hidden_states[all_actions_mask.squeeze(-1)].unsqueeze(0) # (B, act_chunk_len, D)

        # Handle different prediction methods
        if action_head is not None:
            # L1 regression prediction
            normalized_actions = action_head.predict_action(actions_hidden_states)
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
            normalized_actions = normalized_actions.float().cpu().detach().numpy()
        else:
            # Discrete token-based prediction
            predicted_action_token_ids = (
                llava_output.logits[all_actions_mask.squeeze(-1)].unsqueeze(0)
                .argmax(dim=2)
                .cpu()
                .numpy()
            )
            # FIXME: We do not support discrete action prediction right now
            # It seems that vocab_size here is not correct. This should be the dimension of the logit layer, which is actually larger than the vocab_size in the tokenizer. What we actually need here is the vocab_size from the tokenizer.
            discretized_actions = self.vocab_size - predicted_action_token_ids
            discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
            normalized_actions = self.bin_centers[discretized_actions]
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)

        return normalized_actions, actions_hidden_states
    
    def predict_action(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        unnorm_key: Optional[str] = None,
        proprio=None,
        proprio_projector=None,
        action_head=None,
        vision_feature_layer=None,
        vision_feature_select_strategy=None,
        **kwargs: str,
    ) -> np.ndarray:
        """Predict actions from input sequence, with options for different prediction methods.

        Args:
            input_ids: Input token ids
            unnorm_key: Key for unnormalization statistics
            proprio: Proprioceptive features
            proprio_projector: Projector for proprioceptive features
            action_head: Optional head for L1 regression prediction
            **kwargs: Additional arguments including pixel_values and attention_mask

        Returns:
            Tuple of (unnormalized_actions, action_hidden_states)
        """
        pixel_values = kwargs["pixel_values"]
        attention_mask = kwargs["attention_mask"]

        # Create fake labels tensor (needed for action mask)
        labels = input_ids.clone()
        labels[:] = self.ignore_idx

        # Prepare inputs by adding necessary tokens
        input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)

        # Update labels tensor for action mask computation later
        labels = self._prepare_labels_for_action_prediction(labels, input_ids)

        # Get input embeddings and action masks
        input_embeddings = self.get_input_embeddings()(input_ids)
        all_actions_mask = self._process_action_masks(labels)
        
        # vision tokens
        if pixel_values is not None:
            vision_feature_layer = (
                vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
            )
            vision_feature_select_strategy = (
                vision_feature_select_strategy
                if vision_feature_select_strategy is not None
                else self.config.vision_feature_select_strategy
            )
            # pixel_values: b,num_images,c,h,w
            # for each image, we do self.get_image_features
            # then we concat the features of all images
            # pixel_values: (b,num_images,c,h,w) --> (b*num_images,c,h,w)
            b, num_images, c, h, w = pixel_values.shape
            pixel_values = pixel_values.view(-1, c, h, w)  # (b*num_images,c,h,w)
            image_embeds = self.get_image_features(
                pixel_values = pixel_values,
                vision_feature_layer = vision_feature_layer,
                vision_feature_select_strategy = vision_feature_select_strategy,
            )
            
            # image_features: (b*num_images,seq_len,patch_size) --> (b*num_images*seq_len,patch_size)
            image_embeds = image_embeds.view(-1,image_embeds.shape[-1])
            n_image_tokens = (input_ids == self.image_token_idx).sum().item()
            n_image_features = image_embeds.shape[0]
            if n_image_tokens != n_image_features:
                raise ValueError(
                    f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                )

            mask = input_ids == self.image_token_idx
            mask_unsqueezed = mask.unsqueeze(-1)
            mask_expanded = mask_unsqueezed.expand_as(input_embeddings)
            image_mask = mask_expanded.to(input_embeddings.device)

            image_embeds = image_embeds.to(input_embeddings.device, input_embeddings.dtype)
            input_embeddings = input_embeddings.masked_scatter(image_mask, image_embeds)

        # Add proprioceptive features if provided
        use_proprio = proprio_projector is not None and proprio is not None
        if use_proprio:
            batch_size = input_ids.shape[0] if input_ids is not None else input_embeddings.shape[0] # type: ignore
            proprio = torch.Tensor(proprio).to(input_embeddings.device, dtype=input_embeddings.dtype)
            if proprio_projector is not None and proprio is not None:
                # proprio: (bsz, proprio_dim) or (propro_dim,)
                proprio = proprio.reshape(batch_size, -1)  # (bsz, proprio_dim)
                proprio_features = proprio_projector(proprio)  # (bsz, llm_dim)
                proprio_features = proprio_features.unsqueeze(dim=1)  # (bsz, 1, llm_dim)
                #(bsz, 1, llm_dim) --> (bsz*1, llm_dim)
                proprio_features = proprio_features.view(-1, proprio_features.shape[-1])
                n_proprio_tokens = (input_ids == self.proprio_pad_idx).sum().item()
                n_proprio_features = proprio_features.shape[0]
                if n_proprio_tokens != n_proprio_features:
                    raise ValueError(
                        f"Proprio features and proprio tokens do not match: tokens: {n_proprio_tokens}, features {n_proprio_features}"
                    )
                
                mask = input_ids == self.proprio_pad_idx
                mask_unsqueezed = mask.unsqueeze(-1)
                mask_expanded = mask_unsqueezed.expand_as(input_embeddings)
                proprio_mask = mask_expanded.to(input_embeddings.device)
                
                proprio_features = proprio_features.to(input_embeddings.device, input_embeddings.dtype)
                input_embeddings = input_embeddings.masked_scatter(proprio_mask, proprio_features)

        # Run regression or discrete token-based prediction
        normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction(
            input_ids,
            input_embeddings,
            all_actions_mask,
            attention_mask,
            labels,
            action_head,
            pixel_values,
        )

        # Unnormalize predicted actions
        actions = self._unnormalize_actions(normalized_actions, unnorm_key)

        return actions, actions_hidden_states

    @staticmethod
    def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
        """Validate and resolve the unnormalization key for action statistics"""
        if unnorm_key is None:
            assert len(norm_stats) == 1, (
                f"Your model was trained on more than one dataset, "
                f"please pass a `unnorm_key` from the following options to choose the statistics "
                f"used for un-normalizing actions: {norm_stats.keys()}"
            )
            unnorm_key = next(iter(norm_stats.keys()))

        assert unnorm_key in norm_stats, (
            f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
            f"please choose from: {norm_stats.keys()}"
        )
        return unnorm_key

    def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
        """Get the dimensionality of the policy's action space."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return len(self.norm_stats[unnorm_key]["action"]["min"])

    def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
        """Get all the logged statistics for the given dataset."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return self.norm_stats[unnorm_key]["action"]