hongzhouyu commited on
Commit
40b080b
·
verified ·
1 Parent(s): fdb9e3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -10,4 +10,60 @@ base_model:
10
  library_name: transformers
11
  tags:
12
  - medical
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  library_name: transformers
11
  tags:
12
  - medical
13
+ ---
14
+
15
+ <div align="center">
16
+ <h1>
17
+ FineMedLM
18
+ </h1>
19
+ </div>
20
+
21
+ <div align="center">
22
+ <a href="https://github.com/hongzhouyu/FineMed" target="_blank">GitHub</a> | <a href="https://arxiv.org/abs/2501.09213" target="_blank">Paper</a>
23
+ </div>
24
+
25
+ # <span>Introduction</span>
26
+ **FineMedLM** is a medical chat LLM trained via SFT on meticulously crafted synthetic data. By further applying DPO, the model acquires enhanced deep reasoning capabilities, culminating in the development of [FineMedLM-o1](https://huggingface.co/hongzhouyu/FineMedLM-o1).
27
+
28
+ For more information, visit our GitHub repository.
29
+
30
+ # <span>Usage</span>
31
+ You can use FineMedLM in the same way as `Llama-3.1-8B-Instruct`:
32
+ ```python
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model = AutoModelForCausalLM.from_pretrained("hongzhouyu/FineMedLM")
36
+ tokenizer = AutoTokenizer.from_pretrained("hongzhouyu/FineMedLM")
37
+
38
+ prompt = "How do the interactions between neuronal activity, gonadal hormones, and neurotrophins influence axon regeneration post-injury, and what are the potential therapeutic implications of this research? Please think step by step."
39
+ messages = [
40
+ {"role": "system", "content": "You are a helpful professional doctor."},
41
+ {"role": "user", "content": prompt}
42
+ ]
43
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
44
+ model_inputs = tokenizer([text], return_tensors="pt")
45
+
46
+ generated_ids = model.generate(
47
+ model_inputs.input_ids,
48
+ max_new_tokens=4096
49
+ )
50
+ generated_ids = [
51
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
52
+ ]
53
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
54
+
55
+ print(response)
56
+ ```
57
+
58
+ # <span>Citation</span>
59
+ ```
60
+ @misc{yu2025finemedlmo1enhancingmedicalreasoning,
61
+ title={FineMedLM-o1: Enhancing the Medical Reasoning Ability of LLM from Supervised Fine-Tuning to Test-Time Training},
62
+ author={Hongzhou Yu and Tianhao Cheng and Ying Cheng and Rui Feng},
63
+ year={2025},
64
+ eprint={2501.09213},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.CL},
67
+ url={https://arxiv.org/abs/2501.09213},
68
+ }
69
+ ```