Update README.md
Browse files
README.md
CHANGED
@@ -34,27 +34,49 @@ You can use FineMedLM in the same way as `Llama-3.1-8B-Instruct`:
|
|
34 |
```python
|
35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
prompt = "How do the interactions between neuronal activity, gonadal hormones, and neurotrophins influence axon regeneration post-injury, and what are the potential therapeutic implications of this research? Please think step by step."
|
41 |
messages = [
|
42 |
-
{"role": "system", "content": "You are a helpful professional doctor."},
|
43 |
{"role": "user", "content": prompt}
|
44 |
]
|
|
|
45 |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
46 |
-
|
47 |
|
|
|
|
|
|
|
48 |
generated_ids = model.generate(
|
49 |
model_inputs.input_ids,
|
50 |
-
max_new_tokens=
|
|
|
51 |
)
|
52 |
-
generated_ids = [
|
53 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
54 |
-
]
|
55 |
-
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
56 |
|
57 |
-
|
|
|
58 |
```
|
59 |
|
60 |
# <span>Citation</span>
|
|
|
34 |
```python
|
35 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
|
37 |
+
main_model_name = "hongzhouyu/FineMedLM"
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(main_model_name, device_map="auto")
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(main_model_name)
|
40 |
+
|
41 |
+
# 构造输入
|
42 |
+
prompt = (
|
43 |
+
"""The following are multiple choice questions (with answers) about health. Think step by step and then finish your answer with "the answer is (X)" where X is the correct letter choice.
|
44 |
+
|
45 |
+
|
46 |
+
Question:
|
47 |
+
Polio can be eradicated by which of the following?
|
48 |
+
Options:
|
49 |
+
A. Herbal remedies
|
50 |
+
B. Use of antibiotics
|
51 |
+
C. Regular intake of vitamins
|
52 |
+
D. Administration of tetanus vaccine
|
53 |
+
E. Attention to sewage control and hygiene
|
54 |
+
F. Natural immunity acquired through exposure
|
55 |
+
G. Use of antiviral drugs
|
56 |
+
Answer: Let's think step by step.
|
57 |
+
"""
|
58 |
+
)
|
59 |
+
|
60 |
|
|
|
61 |
messages = [
|
62 |
+
{"role": "system", "content": "You are a helpful professional doctor. The user will give you a medical question, and you should answer it in a professional way."},
|
63 |
{"role": "user", "content": prompt}
|
64 |
]
|
65 |
+
|
66 |
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
67 |
+
print(text)
|
68 |
|
69 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
70 |
+
|
71 |
+
print("-----start generate-----")
|
72 |
generated_ids = model.generate(
|
73 |
model_inputs.input_ids,
|
74 |
+
max_new_tokens=2048,
|
75 |
+
eos_token_id=tokenizer.eos_token_id
|
76 |
)
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=False)
|
79 |
+
print(answer)
|
80 |
```
|
81 |
|
82 |
# <span>Citation</span>
|