{"current_steps": 5, "total_steps": 645, "loss": 1.6569, "learning_rate": 5e-07, "epoch": 0.02320185614849188, "percentage": 0.78, "elapsed_time": "0:01:07", "remaining_time": "2:25:00"} {"current_steps": 10, "total_steps": 645, "loss": 1.5099, "learning_rate": 1e-06, "epoch": 0.04640371229698376, "percentage": 1.55, "elapsed_time": "0:02:10", "remaining_time": "2:18:08"} {"current_steps": 15, "total_steps": 645, "loss": 1.2782, "learning_rate": 9.998470286265414e-07, "epoch": 0.06960556844547564, "percentage": 2.33, "elapsed_time": "0:03:12", "remaining_time": "2:14:46"} {"current_steps": 20, "total_steps": 645, "loss": 1.2359, "learning_rate": 9.993882081071305e-07, "epoch": 0.09280742459396751, "percentage": 3.1, "elapsed_time": "0:04:14", "remaining_time": "2:12:45"} {"current_steps": 25, "total_steps": 645, "loss": 1.204, "learning_rate": 9.986238191873872e-07, "epoch": 0.11600928074245939, "percentage": 3.88, "elapsed_time": "0:05:16", "remaining_time": "2:10:58"} {"current_steps": 30, "total_steps": 645, "loss": 1.1627, "learning_rate": 9.975543295858033e-07, "epoch": 0.13921113689095127, "percentage": 4.65, "elapsed_time": "0:06:19", "remaining_time": "2:09:37"} {"current_steps": 35, "total_steps": 645, "loss": 1.1463, "learning_rate": 9.961803937075514e-07, "epoch": 0.16241299303944315, "percentage": 5.43, "elapsed_time": "0:07:21", "remaining_time": "2:08:21"} {"current_steps": 40, "total_steps": 645, "loss": 1.1394, "learning_rate": 9.945028522440653e-07, "epoch": 0.18561484918793503, "percentage": 6.2, "elapsed_time": "0:08:24", "remaining_time": "2:07:05"} {"current_steps": 45, "total_steps": 645, "loss": 1.1371, "learning_rate": 9.925227316586314e-07, "epoch": 0.2088167053364269, "percentage": 6.98, "elapsed_time": "0:09:26", "remaining_time": "2:05:50"} {"current_steps": 50, "total_steps": 645, "loss": 1.1181, "learning_rate": 9.902412435583125e-07, "epoch": 0.23201856148491878, "percentage": 7.75, "elapsed_time": "0:10:28", "remaining_time": "2:04:42"} {"current_steps": 50, "total_steps": 645, "eval_loss": 1.1214605569839478, "epoch": 0.23201856148491878, "percentage": 7.75, "elapsed_time": "0:12:14", "remaining_time": "2:25:42"} {"current_steps": 55, "total_steps": 645, "loss": 1.1163, "learning_rate": 9.876597839525813e-07, "epoch": 0.2552204176334107, "percentage": 8.53, "elapsed_time": "0:13:16", "remaining_time": "2:22:26"} {"current_steps": 60, "total_steps": 645, "loss": 1.1232, "learning_rate": 9.847799323991233e-07, "epoch": 0.27842227378190254, "percentage": 9.3, "elapsed_time": "0:14:18", "remaining_time": "2:19:33"} {"current_steps": 65, "total_steps": 645, "loss": 1.125, "learning_rate": 9.816034510373285e-07, "epoch": 0.30162412993039445, "percentage": 10.08, "elapsed_time": "0:15:21", "remaining_time": "2:17:02"} {"current_steps": 70, "total_steps": 645, "loss": 1.108, "learning_rate": 9.781322835100637e-07, "epoch": 0.3248259860788863, "percentage": 10.85, "elapsed_time": "0:16:24", "remaining_time": "2:14:47"} {"current_steps": 75, "total_steps": 645, "loss": 1.106, "learning_rate": 9.743685537743856e-07, "epoch": 0.3480278422273782, "percentage": 11.63, "elapsed_time": "0:17:27", "remaining_time": "2:12:39"} {"current_steps": 80, "total_steps": 645, "loss": 1.0973, "learning_rate": 9.70314564801922e-07, "epoch": 0.37122969837587005, "percentage": 12.4, "elapsed_time": "0:18:29", "remaining_time": "2:10:36"} {"current_steps": 85, "total_steps": 645, "loss": 1.0964, "learning_rate": 9.659727971697173e-07, "epoch": 0.39443155452436196, "percentage": 13.18, "elapsed_time": "0:19:31", "remaining_time": "2:08:39"} {"current_steps": 90, "total_steps": 645, "loss": 1.0956, "learning_rate": 9.613459075424033e-07, "epoch": 0.4176334106728538, "percentage": 13.95, "elapsed_time": "0:20:34", "remaining_time": "2:06:50"} {"current_steps": 95, "total_steps": 645, "loss": 1.0787, "learning_rate": 9.564367270466245e-07, "epoch": 0.4408352668213457, "percentage": 14.73, "elapsed_time": "0:21:36", "remaining_time": "2:05:06"} {"current_steps": 100, "total_steps": 645, "loss": 1.0765, "learning_rate": 9.51248259538713e-07, "epoch": 0.46403712296983757, "percentage": 15.5, "elapsed_time": "0:22:39", "remaining_time": "2:03:26"} {"current_steps": 100, "total_steps": 645, "eval_loss": 1.0775035619735718, "epoch": 0.46403712296983757, "percentage": 15.5, "elapsed_time": "0:24:24", "remaining_time": "2:13:01"} {"current_steps": 105, "total_steps": 645, "loss": 1.0903, "learning_rate": 9.457836797666721e-07, "epoch": 0.4872389791183295, "percentage": 16.28, "elapsed_time": "0:25:56", "remaining_time": "2:13:26"} {"current_steps": 110, "total_steps": 645, "loss": 1.0697, "learning_rate": 9.400463314275941e-07, "epoch": 0.5104408352668214, "percentage": 17.05, "elapsed_time": "0:26:59", "remaining_time": "2:11:18"} {"current_steps": 115, "total_steps": 645, "loss": 1.0668, "learning_rate": 9.340397251217008e-07, "epoch": 0.5336426914153132, "percentage": 17.83, "elapsed_time": "0:28:02", "remaining_time": "2:09:14"} {"current_steps": 120, "total_steps": 645, "loss": 1.0676, "learning_rate": 9.27767536204258e-07, "epoch": 0.5568445475638051, "percentage": 18.6, "elapsed_time": "0:29:04", "remaining_time": "2:07:13"} {"current_steps": 125, "total_steps": 645, "loss": 1.0746, "learning_rate": 9.212336025366787e-07, "epoch": 0.580046403712297, "percentage": 19.38, "elapsed_time": "0:30:08", "remaining_time": "2:05:21"} {"current_steps": 130, "total_steps": 645, "loss": 1.0724, "learning_rate": 9.144419221381918e-07, "epoch": 0.6032482598607889, "percentage": 20.16, "elapsed_time": "0:31:10", "remaining_time": "2:03:30"} {"current_steps": 135, "total_steps": 645, "loss": 1.0745, "learning_rate": 9.073966507395121e-07, "epoch": 0.6264501160092807, "percentage": 20.93, "elapsed_time": "0:32:12", "remaining_time": "2:01:41"} {"current_steps": 140, "total_steps": 645, "loss": 1.0559, "learning_rate": 9.001020992400085e-07, "epoch": 0.6496519721577726, "percentage": 21.71, "elapsed_time": "0:33:15", "remaining_time": "1:59:59"} {"current_steps": 145, "total_steps": 645, "loss": 1.0705, "learning_rate": 8.925627310699274e-07, "epoch": 0.6728538283062645, "percentage": 22.48, "elapsed_time": "0:34:18", "remaining_time": "1:58:19"} {"current_steps": 150, "total_steps": 645, "loss": 1.0639, "learning_rate": 8.84783159459285e-07, "epoch": 0.6960556844547564, "percentage": 23.26, "elapsed_time": "0:35:20", "remaining_time": "1:56:38"} {"current_steps": 150, "total_steps": 645, "eval_loss": 1.0501643419265747, "epoch": 0.6960556844547564, "percentage": 23.26, "elapsed_time": "0:37:06", "remaining_time": "2:02:26"} {"current_steps": 155, "total_steps": 645, "loss": 1.0472, "learning_rate": 8.767681446150976e-07, "epoch": 0.7192575406032483, "percentage": 24.03, "elapsed_time": "0:38:08", "remaining_time": "2:00:33"} {"current_steps": 160, "total_steps": 645, "loss": 1.0645, "learning_rate": 8.68522590808682e-07, "epoch": 0.7424593967517401, "percentage": 24.81, "elapsed_time": "0:39:10", "remaining_time": "1:58:44"} {"current_steps": 165, "total_steps": 645, "loss": 1.0416, "learning_rate": 8.600515433748001e-07, "epoch": 0.765661252900232, "percentage": 25.58, "elapsed_time": "0:40:12", "remaining_time": "1:56:58"} {"current_steps": 170, "total_steps": 645, "loss": 1.0478, "learning_rate": 8.51360185624495e-07, "epoch": 0.7888631090487239, "percentage": 26.36, "elapsed_time": "0:41:14", "remaining_time": "1:55:15"} {"current_steps": 175, "total_steps": 645, "loss": 1.0383, "learning_rate": 8.424538356734956e-07, "epoch": 0.8120649651972158, "percentage": 27.13, "elapsed_time": "0:42:17", "remaining_time": "1:53:34"} {"current_steps": 180, "total_steps": 645, "loss": 1.0342, "learning_rate": 8.333379431881397e-07, "epoch": 0.8352668213457076, "percentage": 27.91, "elapsed_time": "0:43:19", "remaining_time": "1:51:55"} {"current_steps": 185, "total_steps": 645, "loss": 1.0413, "learning_rate": 8.240180860508026e-07, "epoch": 0.8584686774941995, "percentage": 28.68, "elapsed_time": "0:44:21", "remaining_time": "1:50:18"} {"current_steps": 190, "total_steps": 645, "loss": 1.0264, "learning_rate": 8.144999669468713e-07, "epoch": 0.8816705336426914, "percentage": 29.46, "elapsed_time": "0:45:25", "remaining_time": "1:48:46"} {"current_steps": 195, "total_steps": 645, "loss": 1.028, "learning_rate": 8.047894098753539e-07, "epoch": 0.9048723897911833, "percentage": 30.23, "elapsed_time": "0:46:27", "remaining_time": "1:47:12"} {"current_steps": 200, "total_steps": 645, "loss": 1.0308, "learning_rate": 7.948923565852597e-07, "epoch": 0.9280742459396751, "percentage": 31.01, "elapsed_time": "0:47:30", "remaining_time": "1:45:42"} {"current_steps": 200, "total_steps": 645, "eval_loss": 1.0281875133514404, "epoch": 0.9280742459396751, "percentage": 31.01, "elapsed_time": "0:49:16", "remaining_time": "1:49:37"} {"current_steps": 205, "total_steps": 645, "loss": 1.0262, "learning_rate": 7.848148629399285e-07, "epoch": 0.951276102088167, "percentage": 31.78, "elapsed_time": "0:50:51", "remaining_time": "1:49:09"} {"current_steps": 210, "total_steps": 645, "loss": 1.0349, "learning_rate": 7.745630952115363e-07, "epoch": 0.974477958236659, "percentage": 32.56, "elapsed_time": "0:51:53", "remaining_time": "1:47:29"} {"current_steps": 215, "total_steps": 645, "loss": 1.0216, "learning_rate": 7.641433263080418e-07, "epoch": 0.9976798143851509, "percentage": 33.33, "elapsed_time": "0:52:55", "remaining_time": "1:45:51"} {"current_steps": 220, "total_steps": 645, "loss": 0.9241, "learning_rate": 7.535619319348865e-07, "epoch": 1.0208816705336428, "percentage": 34.11, "elapsed_time": "0:53:58", "remaining_time": "1:44:16"} {"current_steps": 225, "total_steps": 645, "loss": 0.9001, "learning_rate": 7.428253866937918e-07, "epoch": 1.0440835266821347, "percentage": 34.88, "elapsed_time": "0:55:01", "remaining_time": "1:42:42"} {"current_steps": 230, "total_steps": 645, "loss": 0.8916, "learning_rate": 7.319402601210447e-07, "epoch": 1.0672853828306264, "percentage": 35.66, "elapsed_time": "0:56:03", "remaining_time": "1:41:09"} {"current_steps": 235, "total_steps": 645, "loss": 0.8876, "learning_rate": 7.209132126676933e-07, "epoch": 1.0904872389791183, "percentage": 36.43, "elapsed_time": "0:57:05", "remaining_time": "1:39:37"} {"current_steps": 240, "total_steps": 645, "loss": 0.8931, "learning_rate": 7.097509916241145e-07, "epoch": 1.1136890951276102, "percentage": 37.21, "elapsed_time": "0:58:08", "remaining_time": "1:38:06"} {"current_steps": 245, "total_steps": 645, "loss": 0.905, "learning_rate": 6.984604269914436e-07, "epoch": 1.136890951276102, "percentage": 37.98, "elapsed_time": "0:59:10", "remaining_time": "1:36:36"} {"current_steps": 250, "total_steps": 645, "loss": 0.9038, "learning_rate": 6.870484273023967e-07, "epoch": 1.160092807424594, "percentage": 38.76, "elapsed_time": "1:00:12", "remaining_time": "1:35:07"} {"current_steps": 250, "total_steps": 645, "eval_loss": 1.0220295190811157, "epoch": 1.160092807424594, "percentage": 38.76, "elapsed_time": "1:01:58", "remaining_time": "1:37:55"} {"current_steps": 255, "total_steps": 645, "loss": 0.8964, "learning_rate": 6.755219753940388e-07, "epoch": 1.1832946635730859, "percentage": 39.53, "elapsed_time": "1:03:00", "remaining_time": "1:36:22"} {"current_steps": 260, "total_steps": 645, "loss": 0.8898, "learning_rate": 6.638881241350883e-07, "epoch": 1.2064965197215778, "percentage": 40.31, "elapsed_time": "1:04:03", "remaining_time": "1:34:50"} {"current_steps": 265, "total_steps": 645, "loss": 0.8951, "learning_rate": 6.52153992110368e-07, "epoch": 1.2296983758700697, "percentage": 41.09, "elapsed_time": "1:05:06", "remaining_time": "1:33:21"} {"current_steps": 270, "total_steps": 645, "loss": 0.8961, "learning_rate": 6.403267592650466e-07, "epoch": 1.2529002320185616, "percentage": 41.86, "elapsed_time": "1:06:09", "remaining_time": "1:31:52"} {"current_steps": 275, "total_steps": 645, "loss": 0.8919, "learning_rate": 6.28413662511334e-07, "epoch": 1.2761020881670533, "percentage": 42.64, "elapsed_time": "1:07:12", "remaining_time": "1:30:25"} {"current_steps": 280, "total_steps": 645, "loss": 0.8931, "learning_rate": 6.164219913003207e-07, "epoch": 1.2993039443155452, "percentage": 43.41, "elapsed_time": "1:08:15", "remaining_time": "1:28:58"} {"current_steps": 285, "total_steps": 645, "loss": 0.8792, "learning_rate": 6.043590831616676e-07, "epoch": 1.322505800464037, "percentage": 44.19, "elapsed_time": "1:09:17", "remaining_time": "1:27:31"} {"current_steps": 290, "total_steps": 645, "loss": 0.8768, "learning_rate": 5.92232319213878e-07, "epoch": 1.345707656612529, "percentage": 44.96, "elapsed_time": "1:10:19", "remaining_time": "1:26:05"} {"current_steps": 295, "total_steps": 645, "loss": 0.8788, "learning_rate": 5.800491196478988e-07, "epoch": 1.368909512761021, "percentage": 45.74, "elapsed_time": "1:11:22", "remaining_time": "1:24:40"} {"current_steps": 300, "total_steps": 645, "loss": 0.8973, "learning_rate": 5.678169391868127e-07, "epoch": 1.3921113689095128, "percentage": 46.51, "elapsed_time": "1:12:25", "remaining_time": "1:23:17"} {"current_steps": 300, "total_steps": 645, "eval_loss": 1.0114275217056274, "epoch": 1.3921113689095128, "percentage": 46.51, "elapsed_time": "1:14:11", "remaining_time": "1:25:19"} {"current_steps": 305, "total_steps": 645, "loss": 0.8831, "learning_rate": 5.555432625244023e-07, "epoch": 1.4153132250580047, "percentage": 47.29, "elapsed_time": "1:15:45", "remaining_time": "1:24:27"} {"current_steps": 310, "total_steps": 645, "loss": 0.8848, "learning_rate": 5.432355997453728e-07, "epoch": 1.4385150812064964, "percentage": 48.06, "elapsed_time": "1:16:48", "remaining_time": "1:22:59"} {"current_steps": 315, "total_steps": 645, "loss": 0.8999, "learning_rate": 5.309014817300421e-07, "epoch": 1.4617169373549883, "percentage": 48.84, "elapsed_time": "1:17:50", "remaining_time": "1:21:33"} {"current_steps": 320, "total_steps": 645, "loss": 0.8901, "learning_rate": 5.185484555463026e-07, "epoch": 1.4849187935034802, "percentage": 49.61, "elapsed_time": "1:18:53", "remaining_time": "1:20:06"} {"current_steps": 325, "total_steps": 645, "loss": 0.8909, "learning_rate": 5.061840798316814e-07, "epoch": 1.5081206496519721, "percentage": 50.39, "elapsed_time": "1:19:55", "remaining_time": "1:18:41"} {"current_steps": 330, "total_steps": 645, "loss": 0.8829, "learning_rate": 4.938159201683186e-07, "epoch": 1.531322505800464, "percentage": 51.16, "elapsed_time": "1:20:57", "remaining_time": "1:17:17"} {"current_steps": 335, "total_steps": 645, "loss": 0.8867, "learning_rate": 4.814515444536974e-07, "epoch": 1.554524361948956, "percentage": 51.94, "elapsed_time": "1:21:59", "remaining_time": "1:15:52"} {"current_steps": 340, "total_steps": 645, "loss": 0.892, "learning_rate": 4.69098518269958e-07, "epoch": 1.5777262180974478, "percentage": 52.71, "elapsed_time": "1:23:02", "remaining_time": "1:14:29"} {"current_steps": 345, "total_steps": 645, "loss": 0.8775, "learning_rate": 4.5676440025462726e-07, "epoch": 1.6009280742459397, "percentage": 53.49, "elapsed_time": "1:24:04", "remaining_time": "1:13:06"} {"current_steps": 350, "total_steps": 645, "loss": 0.8747, "learning_rate": 4.444567374755977e-07, "epoch": 1.6241299303944317, "percentage": 54.26, "elapsed_time": "1:25:06", "remaining_time": "1:11:44"} {"current_steps": 350, "total_steps": 645, "eval_loss": 1.0039345026016235, "epoch": 1.6241299303944317, "percentage": 54.26, "elapsed_time": "1:26:52", "remaining_time": "1:13:13"} {"current_steps": 355, "total_steps": 645, "loss": 0.884, "learning_rate": 4.3218306081318713e-07, "epoch": 1.6473317865429236, "percentage": 55.04, "elapsed_time": "1:27:54", "remaining_time": "1:11:48"} {"current_steps": 360, "total_steps": 645, "loss": 0.8945, "learning_rate": 4.199508803521012e-07, "epoch": 1.6705336426914155, "percentage": 55.81, "elapsed_time": "1:28:56", "remaining_time": "1:10:25"} {"current_steps": 365, "total_steps": 645, "loss": 0.8793, "learning_rate": 4.0776768078612207e-07, "epoch": 1.6937354988399071, "percentage": 56.59, "elapsed_time": "1:29:58", "remaining_time": "1:09:01"} {"current_steps": 370, "total_steps": 645, "loss": 0.8785, "learning_rate": 3.9564091683833244e-07, "epoch": 1.716937354988399, "percentage": 57.36, "elapsed_time": "1:31:01", "remaining_time": "1:07:38"} {"current_steps": 375, "total_steps": 645, "loss": 0.8772, "learning_rate": 3.835780086996793e-07, "epoch": 1.740139211136891, "percentage": 58.14, "elapsed_time": "1:32:03", "remaining_time": "1:06:16"} {"current_steps": 380, "total_steps": 645, "loss": 0.8701, "learning_rate": 3.7158633748866607e-07, "epoch": 1.7633410672853829, "percentage": 58.91, "elapsed_time": "1:33:06", "remaining_time": "1:04:55"} {"current_steps": 385, "total_steps": 645, "loss": 0.871, "learning_rate": 3.596732407349536e-07, "epoch": 1.7865429234338746, "percentage": 59.69, "elapsed_time": "1:34:08", "remaining_time": "1:03:34"} {"current_steps": 390, "total_steps": 645, "loss": 0.8751, "learning_rate": 3.4784600788963193e-07, "epoch": 1.8097447795823665, "percentage": 60.47, "elapsed_time": "1:35:10", "remaining_time": "1:02:13"} {"current_steps": 395, "total_steps": 645, "loss": 0.8687, "learning_rate": 3.3611187586491157e-07, "epoch": 1.8329466357308584, "percentage": 61.24, "elapsed_time": "1:36:12", "remaining_time": "1:00:53"} {"current_steps": 400, "total_steps": 645, "loss": 0.8818, "learning_rate": 3.244780246059612e-07, "epoch": 1.8561484918793503, "percentage": 62.02, "elapsed_time": "1:37:15", "remaining_time": "0:59:34"} {"current_steps": 400, "total_steps": 645, "eval_loss": 0.996471107006073, "epoch": 1.8561484918793503, "percentage": 62.02, "elapsed_time": "1:39:01", "remaining_time": "1:00:39"} {"current_steps": 405, "total_steps": 645, "loss": 0.8753, "learning_rate": 3.129515726976034e-07, "epoch": 1.8793503480278422, "percentage": 62.79, "elapsed_time": "1:40:35", "remaining_time": "0:59:36"} {"current_steps": 410, "total_steps": 645, "loss": 0.8731, "learning_rate": 3.015395730085565e-07, "epoch": 1.902552204176334, "percentage": 63.57, "elapsed_time": "1:41:37", "remaining_time": "0:58:14"} {"current_steps": 415, "total_steps": 645, "loss": 0.8752, "learning_rate": 2.902490083758856e-07, "epoch": 1.925754060324826, "percentage": 64.34, "elapsed_time": "1:42:39", "remaining_time": "0:56:53"} {"current_steps": 420, "total_steps": 645, "loss": 0.8879, "learning_rate": 2.790867873323067e-07, "epoch": 1.948955916473318, "percentage": 65.12, "elapsed_time": "1:43:41", "remaining_time": "0:55:32"} {"current_steps": 425, "total_steps": 645, "loss": 0.8728, "learning_rate": 2.680597398789554e-07, "epoch": 1.9721577726218098, "percentage": 65.89, "elapsed_time": "1:44:43", "remaining_time": "0:54:12"} {"current_steps": 430, "total_steps": 645, "loss": 0.8786, "learning_rate": 2.5717461330620815e-07, "epoch": 1.9953596287703017, "percentage": 66.67, "elapsed_time": "1:45:46", "remaining_time": "0:52:53"} {"current_steps": 435, "total_steps": 645, "loss": 0.8171, "learning_rate": 2.464380680651134e-07, "epoch": 2.0185614849187936, "percentage": 67.44, "elapsed_time": "1:46:49", "remaining_time": "0:51:34"} {"current_steps": 440, "total_steps": 645, "loss": 0.7862, "learning_rate": 2.358566736919581e-07, "epoch": 2.0417633410672855, "percentage": 68.22, "elapsed_time": "1:47:52", "remaining_time": "0:50:15"} {"current_steps": 445, "total_steps": 645, "loss": 0.789, "learning_rate": 2.2543690478846388e-07, "epoch": 2.0649651972157774, "percentage": 68.99, "elapsed_time": "1:48:54", "remaining_time": "0:48:56"} {"current_steps": 450, "total_steps": 645, "loss": 0.7851, "learning_rate": 2.1518513706007152e-07, "epoch": 2.0881670533642693, "percentage": 69.77, "elapsed_time": "1:49:57", "remaining_time": "0:47:38"} {"current_steps": 450, "total_steps": 645, "eval_loss": 1.0085411071777344, "epoch": 2.0881670533642693, "percentage": 69.77, "elapsed_time": "1:51:42", "remaining_time": "0:48:24"} {"current_steps": 455, "total_steps": 645, "loss": 0.8027, "learning_rate": 2.051076434147403e-07, "epoch": 2.111368909512761, "percentage": 70.54, "elapsed_time": "1:52:45", "remaining_time": "0:47:05"} {"current_steps": 460, "total_steps": 645, "loss": 0.7961, "learning_rate": 1.9521059012464607e-07, "epoch": 2.1345707656612527, "percentage": 71.32, "elapsed_time": "1:53:47", "remaining_time": "0:45:45"} {"current_steps": 465, "total_steps": 645, "loss": 0.7881, "learning_rate": 1.855000330531289e-07, "epoch": 2.1577726218097446, "percentage": 72.09, "elapsed_time": "1:54:50", "remaining_time": "0:44:27"} {"current_steps": 470, "total_steps": 645, "loss": 0.794, "learning_rate": 1.7598191394919737e-07, "epoch": 2.1809744779582365, "percentage": 72.87, "elapsed_time": "1:55:52", "remaining_time": "0:43:08"} {"current_steps": 475, "total_steps": 645, "loss": 0.7766, "learning_rate": 1.666620568118603e-07, "epoch": 2.2041763341067284, "percentage": 73.64, "elapsed_time": "1:56:55", "remaining_time": "0:41:50"} {"current_steps": 480, "total_steps": 645, "loss": 0.775, "learning_rate": 1.5754616432650443e-07, "epoch": 2.2273781902552203, "percentage": 74.42, "elapsed_time": "1:57:57", "remaining_time": "0:40:32"} {"current_steps": 485, "total_steps": 645, "loss": 0.784, "learning_rate": 1.4863981437550498e-07, "epoch": 2.2505800464037122, "percentage": 75.19, "elapsed_time": "1:59:00", "remaining_time": "0:39:15"} {"current_steps": 490, "total_steps": 645, "loss": 0.7858, "learning_rate": 1.3994845662519983e-07, "epoch": 2.273781902552204, "percentage": 75.97, "elapsed_time": "2:00:03", "remaining_time": "0:37:58"} {"current_steps": 495, "total_steps": 645, "loss": 0.7676, "learning_rate": 1.3147740919131812e-07, "epoch": 2.296983758700696, "percentage": 76.74, "elapsed_time": "2:01:05", "remaining_time": "0:36:41"} {"current_steps": 500, "total_steps": 645, "loss": 0.7784, "learning_rate": 1.2323185538490228e-07, "epoch": 2.320185614849188, "percentage": 77.52, "elapsed_time": "2:02:08", "remaining_time": "0:35:25"} {"current_steps": 500, "total_steps": 645, "eval_loss": 1.0106791257858276, "epoch": 2.320185614849188, "percentage": 77.52, "elapsed_time": "2:03:53", "remaining_time": "0:35:55"} {"current_steps": 505, "total_steps": 645, "loss": 0.7911, "learning_rate": 1.1521684054071523e-07, "epoch": 2.34338747099768, "percentage": 78.29, "elapsed_time": "2:05:27", "remaining_time": "0:34:46"} {"current_steps": 510, "total_steps": 645, "loss": 0.7845, "learning_rate": 1.0743726893007254e-07, "epoch": 2.3665893271461718, "percentage": 79.07, "elapsed_time": "2:06:29", "remaining_time": "0:33:29"} {"current_steps": 515, "total_steps": 645, "loss": 0.7839, "learning_rate": 9.989790075999144e-08, "epoch": 2.3897911832946637, "percentage": 79.84, "elapsed_time": "2:07:32", "remaining_time": "0:32:11"} {"current_steps": 520, "total_steps": 645, "loss": 0.7797, "learning_rate": 9.260334926048785e-08, "epoch": 2.4129930394431556, "percentage": 80.62, "elapsed_time": "2:08:34", "remaining_time": "0:30:54"} {"current_steps": 525, "total_steps": 645, "loss": 0.7886, "learning_rate": 8.555807786180813e-08, "epoch": 2.4361948955916475, "percentage": 81.4, "elapsed_time": "2:09:37", "remaining_time": "0:29:37"} {"current_steps": 530, "total_steps": 645, "loss": 0.7798, "learning_rate": 7.876639746332131e-08, "epoch": 2.4593967517401394, "percentage": 82.17, "elapsed_time": "2:10:39", "remaining_time": "0:28:21"} {"current_steps": 535, "total_steps": 645, "loss": 0.779, "learning_rate": 7.223246379574205e-08, "epoch": 2.4825986078886313, "percentage": 82.95, "elapsed_time": "2:11:41", "remaining_time": "0:27:04"} {"current_steps": 540, "total_steps": 645, "loss": 0.7865, "learning_rate": 6.596027487829913e-08, "epoch": 2.505800464037123, "percentage": 83.72, "elapsed_time": "2:12:44", "remaining_time": "0:25:48"} {"current_steps": 545, "total_steps": 645, "loss": 0.7677, "learning_rate": 5.995366857240591e-08, "epoch": 2.529002320185615, "percentage": 84.5, "elapsed_time": "2:13:47", "remaining_time": "0:24:32"} {"current_steps": 550, "total_steps": 645, "loss": 0.7773, "learning_rate": 5.421632023332778e-08, "epoch": 2.5522041763341066, "percentage": 85.27, "elapsed_time": "2:14:49", "remaining_time": "0:23:17"} {"current_steps": 550, "total_steps": 645, "eval_loss": 1.0086498260498047, "epoch": 2.5522041763341066, "percentage": 85.27, "elapsed_time": "2:16:35", "remaining_time": "0:23:35"} {"current_steps": 555, "total_steps": 645, "loss": 0.7898, "learning_rate": 4.8751740461286826e-08, "epoch": 2.5754060324825985, "percentage": 86.05, "elapsed_time": "2:17:38", "remaining_time": "0:22:19"} {"current_steps": 560, "total_steps": 645, "loss": 0.789, "learning_rate": 4.356327295337542e-08, "epoch": 2.5986078886310904, "percentage": 86.82, "elapsed_time": "2:18:40", "remaining_time": "0:21:02"} {"current_steps": 565, "total_steps": 645, "loss": 0.7859, "learning_rate": 3.865409245759671e-08, "epoch": 2.6218097447795823, "percentage": 87.6, "elapsed_time": "2:19:43", "remaining_time": "0:19:47"} {"current_steps": 570, "total_steps": 645, "loss": 0.7909, "learning_rate": 3.402720283028277e-08, "epoch": 2.645011600928074, "percentage": 88.37, "elapsed_time": "2:20:46", "remaining_time": "0:18:31"} {"current_steps": 575, "total_steps": 645, "loss": 0.7861, "learning_rate": 2.968543519807809e-08, "epoch": 2.668213457076566, "percentage": 89.15, "elapsed_time": "2:21:48", "remaining_time": "0:17:15"} {"current_steps": 580, "total_steps": 645, "loss": 0.782, "learning_rate": 2.5631446225614527e-08, "epoch": 2.691415313225058, "percentage": 89.92, "elapsed_time": "2:22:51", "remaining_time": "0:16:00"} {"current_steps": 585, "total_steps": 645, "loss": 0.7801, "learning_rate": 2.1867716489936294e-08, "epoch": 2.71461716937355, "percentage": 90.7, "elapsed_time": "2:23:53", "remaining_time": "0:14:45"} {"current_steps": 590, "total_steps": 645, "loss": 0.7855, "learning_rate": 1.8396548962671454e-08, "epoch": 2.737819025522042, "percentage": 91.47, "elapsed_time": "2:24:55", "remaining_time": "0:13:30"} {"current_steps": 595, "total_steps": 645, "loss": 0.7837, "learning_rate": 1.5220067600876684e-08, "epoch": 2.7610208816705337, "percentage": 92.25, "elapsed_time": "2:25:57", "remaining_time": "0:12:15"} {"current_steps": 600, "total_steps": 645, "loss": 0.784, "learning_rate": 1.2340216047418694e-08, "epoch": 2.7842227378190256, "percentage": 93.02, "elapsed_time": "2:27:00", "remaining_time": "0:11:01"} {"current_steps": 600, "total_steps": 645, "eval_loss": 1.0076881647109985, "epoch": 2.7842227378190256, "percentage": 93.02, "elapsed_time": "2:28:45", "remaining_time": "0:11:09"} {"current_steps": 605, "total_steps": 645, "loss": 0.789, "learning_rate": 9.758756441687332e-09, "epoch": 2.8074245939675175, "percentage": 93.8, "elapsed_time": "2:30:19", "remaining_time": "0:09:56"} {"current_steps": 610, "total_steps": 645, "loss": 0.7827, "learning_rate": 7.477268341368359e-09, "epoch": 2.8306264501160094, "percentage": 94.57, "elapsed_time": "2:31:21", "remaining_time": "0:08:41"} {"current_steps": 615, "total_steps": 645, "loss": 0.7729, "learning_rate": 5.497147755934628e-09, "epoch": 2.853828306264501, "percentage": 95.35, "elapsed_time": "2:32:23", "remaining_time": "0:07:26"} {"current_steps": 620, "total_steps": 645, "loss": 0.7741, "learning_rate": 3.819606292448541e-09, "epoch": 2.877030162412993, "percentage": 96.12, "elapsed_time": "2:33:26", "remaining_time": "0:06:11"} {"current_steps": 625, "total_steps": 645, "loss": 0.7799, "learning_rate": 2.4456704141967433e-09, "epoch": 2.9002320185614847, "percentage": 96.9, "elapsed_time": "2:34:28", "remaining_time": "0:04:56"} {"current_steps": 630, "total_steps": 645, "loss": 0.7855, "learning_rate": 1.3761808126126483e-09, "epoch": 2.9234338747099766, "percentage": 97.67, "elapsed_time": "2:35:31", "remaining_time": "0:03:42"} {"current_steps": 635, "total_steps": 645, "loss": 0.7758, "learning_rate": 6.117918928693622e-10, "epoch": 2.9466357308584685, "percentage": 98.45, "elapsed_time": "2:36:33", "remaining_time": "0:02:27"} {"current_steps": 640, "total_steps": 645, "loss": 0.7781, "learning_rate": 1.529713734584326e-10, "epoch": 2.9698375870069604, "percentage": 99.22, "elapsed_time": "2:37:36", "remaining_time": "0:01:13"} {"current_steps": 645, "total_steps": 645, "loss": 0.782, "learning_rate": 0.0, "epoch": 2.9930394431554523, "percentage": 100.0, "elapsed_time": "2:38:38", "remaining_time": "0:00:00"} {"current_steps": 645, "total_steps": 645, "epoch": 2.9930394431554523, "percentage": 100.0, "elapsed_time": "2:39:10", "remaining_time": "0:00:00"}