Update README.md
Browse files
README.md
CHANGED
@@ -254,19 +254,36 @@ fewshot_output = finetune_forecast_trainer.evaluate(dset_test)
|
|
254 |
The r2 TTM models were trained on a collection of datasets as follows:
|
255 |
- Australian Electricity Demand: https://zenodo.org/records/4659727
|
256 |
- Australian Weather: https://zenodo.org/records/4654822
|
257 |
-
- Bitcoin
|
258 |
-
- KDD Cup 2018
|
259 |
- London Smart Meters: https://zenodo.org/records/4656091
|
260 |
- Saugeen River Flow: https://zenodo.org/records/4656058
|
261 |
- Solar Power: https://zenodo.org/records/4656027
|
262 |
- Sunspots: https://zenodo.org/records/4654722
|
263 |
- Solar: https://zenodo.org/records/4656144
|
264 |
- US Births: https://zenodo.org/records/4656049
|
265 |
-
- Wind Farms Production
|
266 |
- Wind Power: https://zenodo.org/records/4656032
|
267 |
- PEMSD3, PEMSD4, PEMSD7, PEMSD8, PEMS_BAY: https://drive.google.com/drive/folders/1g5v2Gq1tkOq8XO0HDCZ9nOTtRpB6-gPe
|
268 |
- LOS_LOOP: https://drive.google.com/drive/folders/1g5v2Gq1tkOq8XO0HDCZ9nOTtRpB6-gPe
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
|
272 |
## Citation
|
|
|
254 |
The r2 TTM models were trained on a collection of datasets as follows:
|
255 |
- Australian Electricity Demand: https://zenodo.org/records/4659727
|
256 |
- Australian Weather: https://zenodo.org/records/4654822
|
257 |
+
- Bitcoin: https://zenodo.org/records/5122101
|
258 |
+
- KDD Cup 2018: https://zenodo.org/records/4656756
|
259 |
- London Smart Meters: https://zenodo.org/records/4656091
|
260 |
- Saugeen River Flow: https://zenodo.org/records/4656058
|
261 |
- Solar Power: https://zenodo.org/records/4656027
|
262 |
- Sunspots: https://zenodo.org/records/4654722
|
263 |
- Solar: https://zenodo.org/records/4656144
|
264 |
- US Births: https://zenodo.org/records/4656049
|
265 |
+
- Wind Farms Production: https://zenodo.org/records/4654858
|
266 |
- Wind Power: https://zenodo.org/records/4656032
|
267 |
- PEMSD3, PEMSD4, PEMSD7, PEMSD8, PEMS_BAY: https://drive.google.com/drive/folders/1g5v2Gq1tkOq8XO0HDCZ9nOTtRpB6-gPe
|
268 |
- LOS_LOOP: https://drive.google.com/drive/folders/1g5v2Gq1tkOq8XO0HDCZ9nOTtRpB6-gPe
|
269 |
|
270 |
+
The r2.1 TTM models (denoted by branches with suffix r2.1) were trained on the above collection, in addition to the following datasets:
|
271 |
+
- Weather: https://zenodo.org/records/4654822
|
272 |
+
- Covid Deaths: https://zenodo.org/records/4656009
|
273 |
+
- Covid Mobility: https://zenodo.org/records/4663809
|
274 |
+
- Extended Wikipedia Web Traffic: https://zenodo.org/records/7371038
|
275 |
+
- NN5: https://zenodo.org/records/4656117, https://zenodo.org/records/4656125
|
276 |
+
- Temperature Rain: https://zenodo.org/records/5129091
|
277 |
+
- Vehicle Trips: https://zenodo.org/records/5122537
|
278 |
+
- Kaggle Web Traffic: https://zenodo.org/records/4656075, https://zenodo.org/records/4656664
|
279 |
+
- Hierarchical Sales: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/hierarchical_sales
|
280 |
+
- Project Tycho: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/project_tycho
|
281 |
+
- Subseasonal: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/subseasonal
|
282 |
+
- Subseasonal Precipitation: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/subseasonal_precip
|
283 |
+
- Uber TLC: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/uber_tlc_daily
|
284 |
+
- Wiki Rolling: https://github.com/awslabs/gluonts/blob/1553651ca1fca63a16e012b8927bd9ce72b8e79e/datasets/wiki-rolling_nips.tar.gz
|
285 |
+
- CDC FluView ILINet: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/cdc_fluview_ilinet
|
286 |
+
- CDC FluView WHO/NREVSS: https://huggingface.co/datasets/Salesforce/lotsa_data/tree/main/cdc_fluview_who_nrevss
|
287 |
|
288 |
|
289 |
## Citation
|