Upload 9 files
Browse files- .gitattributes +1 -0
- config.json +35 -0
- config/ms_yahei.ttf +3 -0
- csc_model.py +152 -0
- csc_tokenizer.py +202 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +19 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
config/ms_yahei.ttf filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "iioSnail/NamBert-for-csc",
|
3 |
+
"architectures": [
|
4 |
+
"NamBertForCSC"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "csc_model.NamBertForCSC"
|
9 |
+
},
|
10 |
+
"classifier_dropout": null,
|
11 |
+
"directionality": "bidi",
|
12 |
+
"gradient_checkpointing": false,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.1,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"layer_norm_eps": 1e-12,
|
19 |
+
"max_position_embeddings": 512,
|
20 |
+
"model_type": "bert",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"pooler_fc_size": 768,
|
25 |
+
"pooler_num_attention_heads": 12,
|
26 |
+
"pooler_num_fc_layers": 3,
|
27 |
+
"pooler_size_per_head": 128,
|
28 |
+
"pooler_type": "first_token_transform",
|
29 |
+
"position_embedding_type": "absolute",
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.33.2",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 21128
|
35 |
+
}
|
config/ms_yahei.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3c0e7bbcec69ee4765a53831c7be310acaca1ec1b408974ca4f4c73c1aa400c
|
3 |
+
size 15044440
|
csc_model.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from torch import nn
|
9 |
+
from torchvision.models import resnet18
|
10 |
+
from transformers import BertPreTrainedModel, BertForMaskedLM
|
11 |
+
from transformers.activations import GELUActivation
|
12 |
+
from transformers.modeling_outputs import MaskedLMOutput
|
13 |
+
|
14 |
+
cache_path = Path(os.path.abspath(__file__)).parent
|
15 |
+
|
16 |
+
|
17 |
+
def download_file(filename: str, path: Path):
|
18 |
+
if os.path.exists(cache_path / filename):
|
19 |
+
return
|
20 |
+
|
21 |
+
if os.path.exists(path / filename):
|
22 |
+
shutil.copyfile(path / filename, cache_path / filename)
|
23 |
+
return
|
24 |
+
|
25 |
+
hf_hub_download(
|
26 |
+
"iioSnail/NamBert-for-csc",
|
27 |
+
filename,
|
28 |
+
local_dir=cache_path,
|
29 |
+
)
|
30 |
+
time.sleep(0.2)
|
31 |
+
|
32 |
+
|
33 |
+
class NamBertForCSC(BertPreTrainedModel):
|
34 |
+
|
35 |
+
def __init__(self, config):
|
36 |
+
super(NamBertForCSC, self).__init__(config)
|
37 |
+
|
38 |
+
self.bert = BertForMaskedLM(config).bert
|
39 |
+
self.token_forget_gate = nn.Linear(768, 768, bias=False)
|
40 |
+
|
41 |
+
self.pinyin_feature_size = 6
|
42 |
+
self.pinyin_embeddings = PinyinManualEmbeddings()
|
43 |
+
|
44 |
+
self.glyph_feature_size = 56
|
45 |
+
self.glyph_embeddings = GlyphDenseEmbedding()
|
46 |
+
|
47 |
+
self.cls = BertOnlyMLMHead(768 + self.pinyin_feature_size + self.glyph_feature_size, config.vocab_size,
|
48 |
+
layer_num=1)
|
49 |
+
|
50 |
+
def forward(self, input_ids, attention_mask, token_type_ids, pinyin_ids, images, **kwargs):
|
51 |
+
batch_size = input_ids.size(0)
|
52 |
+
|
53 |
+
del kwargs['offset_mapping']
|
54 |
+
|
55 |
+
bert_outputs = self.bert(input_ids=input_ids,
|
56 |
+
attention_mask=attention_mask,
|
57 |
+
token_type_ids=token_type_ids,
|
58 |
+
**kwargs)
|
59 |
+
|
60 |
+
token_embeddings = self.bert.embeddings(input_ids)
|
61 |
+
token_embeddings = token_embeddings * self.token_forget_gate(token_embeddings).sigmoid()
|
62 |
+
bert_outputs.last_hidden_state += token_embeddings
|
63 |
+
|
64 |
+
pinyin_embeddings = self.pinyin_embeddings(pinyin_ids)
|
65 |
+
pinyin_embeddings = pinyin_embeddings.view(batch_size, -1, self.pinyin_feature_size)
|
66 |
+
|
67 |
+
glyph_embeddings = self.glyph_embeddings(images)
|
68 |
+
glyph_embeddings = glyph_embeddings.view(batch_size, -1, self.glyph_feature_size)
|
69 |
+
|
70 |
+
hidden_states = torch.concat([bert_outputs.last_hidden_state,
|
71 |
+
pinyin_embeddings,
|
72 |
+
glyph_embeddings], dim=-1)
|
73 |
+
|
74 |
+
logits = self.cls(hidden_states)
|
75 |
+
|
76 |
+
return MaskedLMOutput(
|
77 |
+
logits=logits,
|
78 |
+
hidden_states=bert_outputs.hidden_states,
|
79 |
+
attentions=bert_outputs.attentions,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
class PinyinManualEmbeddings(nn.Module):
|
84 |
+
|
85 |
+
def __init__(self):
|
86 |
+
super(PinyinManualEmbeddings, self).__init__()
|
87 |
+
self.pinyin_feature_size = 6
|
88 |
+
self.embedding_layer = nn.Linear(6, 6, bias=True)
|
89 |
+
|
90 |
+
def forward(self, inputs):
|
91 |
+
fill = self.pinyin_feature_size - inputs.size(1)
|
92 |
+
if fill > 0:
|
93 |
+
inputs = torch.concat([inputs, torch.zeros((len(inputs), fill), device=inputs.device)], dim=1).long()
|
94 |
+
inputs = self.embedding_layer(inputs.float())
|
95 |
+
return inputs
|
96 |
+
|
97 |
+
|
98 |
+
class GlyphDenseEmbedding(nn.Module):
|
99 |
+
|
100 |
+
def __init__(self, font_size=32):
|
101 |
+
super(GlyphDenseEmbedding, self).__init__()
|
102 |
+
self.font_size = font_size
|
103 |
+
self.embeddings = nn.Sequential(
|
104 |
+
nn.Linear(1024, 512),
|
105 |
+
nn.ReLU(),
|
106 |
+
nn.Dropout(0.15),
|
107 |
+
nn.Linear(512, 256),
|
108 |
+
nn.ReLU(),
|
109 |
+
nn.Dropout(0.15),
|
110 |
+
nn.Linear(256, 56),
|
111 |
+
nn.Tanh()
|
112 |
+
)
|
113 |
+
|
114 |
+
def forward(self, images):
|
115 |
+
batch_size = len(images)
|
116 |
+
images = images.view(batch_size, -1) / 255.
|
117 |
+
return self.embeddings(images)
|
118 |
+
|
119 |
+
|
120 |
+
class BertOnlyMLMHead(nn.Module):
|
121 |
+
def __init__(self, hidden_size, vocab_size, activation='gelu', layer_num=1):
|
122 |
+
super().__init__()
|
123 |
+
self.decoder = nn.Linear(hidden_size, vocab_size, bias=False)
|
124 |
+
self.bias = nn.Parameter(torch.zeros(vocab_size))
|
125 |
+
self.decoder.bias = self.bias
|
126 |
+
|
127 |
+
self.activation = None
|
128 |
+
if activation == 'gelu':
|
129 |
+
self.activation = GELUActivation()
|
130 |
+
elif activation == 'tanh':
|
131 |
+
self.activation = nn.Tanh()
|
132 |
+
elif activation == 'sigmoid':
|
133 |
+
self.activation = nn.Sigmoid()
|
134 |
+
else:
|
135 |
+
raise Exception("Please add activation function here.")
|
136 |
+
|
137 |
+
self.heads = []
|
138 |
+
|
139 |
+
for i in range(layer_num):
|
140 |
+
self.heads.append(nn.Sequential(
|
141 |
+
nn.Linear(hidden_size, hidden_size),
|
142 |
+
self.activation,
|
143 |
+
nn.LayerNorm(hidden_size, eps=1e-12, elementwise_affine=True),
|
144 |
+
))
|
145 |
+
|
146 |
+
self.predictions = nn.Sequential(
|
147 |
+
*self.heads,
|
148 |
+
self.decoder
|
149 |
+
)
|
150 |
+
|
151 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
152 |
+
return self.predictions(sequence_output)
|
csc_tokenizer.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import time
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Union, Optional
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pypinyin
|
9 |
+
import torch
|
10 |
+
from PIL import ImageFont
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from torch import NoneType
|
13 |
+
from torch.nn.utils.rnn import pad_sequence
|
14 |
+
from transformers.tokenization_utils_base import TruncationStrategy
|
15 |
+
from transformers.utils import PaddingStrategy
|
16 |
+
from transformers.utils.generic import TensorType
|
17 |
+
|
18 |
+
try:
|
19 |
+
from tokenizers import BertWordPieceTokenizer
|
20 |
+
except:
|
21 |
+
from tokenizers.implementations import BertWordPieceTokenizer
|
22 |
+
|
23 |
+
from transformers import BertTokenizerFast, BatchEncoding
|
24 |
+
|
25 |
+
cache_path = Path(os.path.abspath(__file__)).parent
|
26 |
+
|
27 |
+
|
28 |
+
def download_file(filename: str, path: Path):
|
29 |
+
if os.path.exists(cache_path / filename):
|
30 |
+
return
|
31 |
+
|
32 |
+
if os.path.exists(path / filename):
|
33 |
+
shutil.copyfile(path / filename, cache_path / filename)
|
34 |
+
return
|
35 |
+
|
36 |
+
hf_hub_download(
|
37 |
+
"iioSnail/NamBert-for-csc",
|
38 |
+
filename,
|
39 |
+
local_dir=cache_path
|
40 |
+
)
|
41 |
+
time.sleep(0.2)
|
42 |
+
|
43 |
+
|
44 |
+
class NamBertTokenizer(BertTokenizerFast):
|
45 |
+
|
46 |
+
def __init__(self, **kwargs):
|
47 |
+
super(NamBertTokenizer, self).__init__(**kwargs)
|
48 |
+
|
49 |
+
self.path = Path(kwargs['name_or_path'])
|
50 |
+
vocab_file = cache_path / 'vocab.txt'
|
51 |
+
config_path = cache_path / 'config'
|
52 |
+
if not os.path.exists(config_path):
|
53 |
+
os.makedirs(config_path)
|
54 |
+
|
55 |
+
self.max_length = 20480
|
56 |
+
self.font_size = 32
|
57 |
+
|
58 |
+
download_file('vocab.txt', self.path)
|
59 |
+
download_file('config/ms_yahei.ttf', self.path)
|
60 |
+
|
61 |
+
self.tokenizer = BertWordPieceTokenizer(str(vocab_file))
|
62 |
+
|
63 |
+
font = ImageFont.truetype(str(cache_path / 'config' / "ms_yahei.ttf"), size=self.font_size)
|
64 |
+
vocab = self.tokenizer.get_vocab().items()
|
65 |
+
self.input_helper = InputHelper(font, vocab)
|
66 |
+
|
67 |
+
def __call__(self,
|
68 |
+
text: Union[str, List[str], List[List[str]]] = None,
|
69 |
+
text_pair: Union[str, List[str], List[List[str]], NoneType] = None,
|
70 |
+
text_target: Union[str, List[str], List[List[str]]] = None,
|
71 |
+
text_pair_target: Union[str, List[str], List[List[str]], NoneType] = None,
|
72 |
+
add_special_tokens: bool = True,
|
73 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
74 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
75 |
+
max_length: Optional[int] = None,
|
76 |
+
stride: int = 0,
|
77 |
+
is_split_into_words: bool = False,
|
78 |
+
pad_to_multiple_of: Optional[int] = None,
|
79 |
+
return_tensors: Union[str, TensorType, NoneType] = None,
|
80 |
+
return_token_type_ids: Optional[bool] = None,
|
81 |
+
return_attention_mask: Optional[bool] = None,
|
82 |
+
return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False,
|
83 |
+
return_offsets_mapping: bool = False,
|
84 |
+
return_length: bool = False,
|
85 |
+
verbose: bool = True, **kwargs) -> BatchEncoding:
|
86 |
+
encoding = super(NamBertTokenizer, self).__call__(
|
87 |
+
text=text,
|
88 |
+
text_pair=text_pair,
|
89 |
+
text_target=text_target,
|
90 |
+
text_pair_target=text_pair_target,
|
91 |
+
add_special_tokens=add_special_tokens,
|
92 |
+
padding=padding,
|
93 |
+
truncation=truncation,
|
94 |
+
max_length=max_length,
|
95 |
+
stride=stride,
|
96 |
+
is_split_into_words=is_split_into_words,
|
97 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
98 |
+
return_tensors='pt',
|
99 |
+
return_token_type_ids=return_token_type_ids,
|
100 |
+
return_attention_mask=return_attention_mask,
|
101 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
102 |
+
return_offsets_mapping=True,
|
103 |
+
return_length=return_length,
|
104 |
+
verbose=verbose,
|
105 |
+
)
|
106 |
+
|
107 |
+
input_ids = encoding.input_ids
|
108 |
+
encoding['pinyin_ids'] = self.input_helper.convert_tokens_to_pinyin_embeddings(input_ids.view(-1))
|
109 |
+
encoding['images'] = self.input_helper.convert_tokens_to_images(input_ids.view(-1))
|
110 |
+
|
111 |
+
return encoding
|
112 |
+
|
113 |
+
def restore_ids(self, target_ids, input_ids):
|
114 |
+
for i in range(len(target_ids)):
|
115 |
+
for j in range(len(target_ids[i])):
|
116 |
+
if target_ids[i][j] == 1 or target_ids[i][j] == 0:
|
117 |
+
target_ids[i][j] = input_ids[i][j]
|
118 |
+
|
119 |
+
return target_ids
|
120 |
+
|
121 |
+
|
122 |
+
class InputHelper:
|
123 |
+
|
124 |
+
def __init__(self, font, vocab):
|
125 |
+
self.font = font
|
126 |
+
self.vocab = vocab
|
127 |
+
|
128 |
+
self.pinyin_embedding_cache = None
|
129 |
+
self._init_pinyin_embedding_cache()
|
130 |
+
|
131 |
+
self.token_images_cache = None
|
132 |
+
self._init_token_images_cache()
|
133 |
+
|
134 |
+
def _init_pinyin_embedding_cache(self):
|
135 |
+
self.pinyin_embedding_cache = {}
|
136 |
+
for token, id in self.vocab:
|
137 |
+
self.pinyin_embedding_cache[id] = convert_char_to_pinyin(token)
|
138 |
+
|
139 |
+
def _init_token_images_cache(self):
|
140 |
+
self.token_images_cache = {}
|
141 |
+
for token, id in self.vocab:
|
142 |
+
self.token_images_cache[id] = convert_char_to_image(self.font, token, 32)
|
143 |
+
|
144 |
+
def convert_tokens_to_pinyin_embeddings(self, input_ids):
|
145 |
+
input_pinyins = []
|
146 |
+
for i, input_id in enumerate(input_ids):
|
147 |
+
input_pinyins.append(self.pinyin_embedding_cache.get(input_id.item(), torch.LongTensor([0])))
|
148 |
+
|
149 |
+
return pad_sequence(input_pinyins, batch_first=True)
|
150 |
+
|
151 |
+
def convert_tokens_to_images(self, input_ids):
|
152 |
+
images = []
|
153 |
+
for i, input_id in enumerate(input_ids):
|
154 |
+
images.append(self.token_images_cache.get(input_id.item(), torch.zeros(32, 32)))
|
155 |
+
return torch.stack(images)
|
156 |
+
|
157 |
+
|
158 |
+
def convert_char_to_pinyin(character, size=-1, tone=False):
|
159 |
+
if not is_chinese(character):
|
160 |
+
return torch.LongTensor([0] * max(size, 1))
|
161 |
+
|
162 |
+
if tone:
|
163 |
+
pinyin = pypinyin.pinyin(character, style=pypinyin.TONE3)[0][0]
|
164 |
+
else:
|
165 |
+
pinyin = pypinyin.pinyin(character, style=pypinyin.NORMAL)[0][0]
|
166 |
+
|
167 |
+
if not tone:
|
168 |
+
embeddings = torch.tensor([ord(letter) - 96 for letter in pinyin])
|
169 |
+
else:
|
170 |
+
embeddings = []
|
171 |
+
for letter in pinyin:
|
172 |
+
if letter.isnumeric():
|
173 |
+
embeddings.append(int(letter) + 27)
|
174 |
+
else:
|
175 |
+
embeddings.append(ord(letter) - 96)
|
176 |
+
embeddings = torch.tensor(embeddings)
|
177 |
+
|
178 |
+
if size > len(embeddings):
|
179 |
+
padding = torch.zeros(size - len(embeddings))
|
180 |
+
embeddings = torch.concat([embeddings, padding])
|
181 |
+
|
182 |
+
return embeddings
|
183 |
+
|
184 |
+
|
185 |
+
def convert_char_to_image(font, character, font_size=32):
|
186 |
+
image = font.getmask(character)
|
187 |
+
image = np.asarray(image).astype(np.float32).reshape(image.size[::-1])
|
188 |
+
|
189 |
+
image = image[:font_size, :font_size]
|
190 |
+
|
191 |
+
if image.size != (font_size, font_size):
|
192 |
+
back_image = np.zeros((font_size, font_size)).astype(np.float32)
|
193 |
+
offset0 = (font_size - image.shape[0]) // 2
|
194 |
+
offset1 = (font_size - image.shape[1]) // 2
|
195 |
+
back_image[offset0:offset0 + image.shape[0], offset1:offset1 + image.shape[1]] = image
|
196 |
+
image = back_image
|
197 |
+
|
198 |
+
return torch.tensor(image)
|
199 |
+
|
200 |
+
|
201 |
+
def is_chinese(uchar):
|
202 |
+
return '\u4e00' <= uchar <= '\u9fa5'
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0e5d81862b4673dab61f223c6e139f32e6a03625002803aae0e81b81de737dc
|
3 |
+
size 484812057
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"csc_tokenizer.NamBertTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"cls_token": "[CLS]",
|
10 |
+
"do_lower_case": true,
|
11 |
+
"mask_token": "[MASK]",
|
12 |
+
"model_max_length": 1000000000000000019884624838656,
|
13 |
+
"pad_token": "[PAD]",
|
14 |
+
"sep_token": "[SEP]",
|
15 |
+
"strip_accents": null,
|
16 |
+
"tokenize_chinese_chars": true,
|
17 |
+
"tokenizer_class": "NamBertTokenizer",
|
18 |
+
"unk_token": "[UNK]"
|
19 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|