MatteoCargnelutti nielsr HF Staff commited on
Commit
319d7c8
·
verified ·
1 Parent(s): 422664a

Add Github link and remove irrelevant widget (#2)

Browse files

- Add Github link and remove irrelevant widget (d5fd13981c129e9d794fd3bd93000e3b6c12e74b)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -1,12 +1,10 @@
1
  ---
 
2
  library_name: transformers
 
3
  tags:
4
  - autotrain
5
  - text-classification
6
- base_model: google-bert/bert-base-multilingual-uncased
7
- widget:
8
- - text: I love AutoTrain
9
- license: apache-2.0
10
  ---
11
 
12
  # 📚 Institutional Books Topic Classifier
@@ -17,6 +15,8 @@ We used this text classifier to assign a topic, derived from the first level of
17
 
18
  Complete experimental setup and results are available in our [technical report](https://arxiv.org/abs/2506.08300) (Section 4.5).
19
 
 
 
20
  ## Base model
21
  [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)
22
 
@@ -90,7 +90,7 @@ General Note: Example of a general note
90
  """
91
 
92
  pipe = pipeline("text-classification", model="instdin/institutional-books-topic-classifier-bert")
93
- result = pile(to_label.strip())
94
  print(result[0]) # {'label': 'SCIENCE', 'score': 0.9996894598007202}
95
  ```
96
 
 
1
  ---
2
+ base_model: google-bert/bert-base-multilingual-uncased
3
  library_name: transformers
4
+ license: apache-2.0
5
  tags:
6
  - autotrain
7
  - text-classification
 
 
 
 
8
  ---
9
 
10
  # 📚 Institutional Books Topic Classifier
 
15
 
16
  Complete experimental setup and results are available in our [technical report](https://arxiv.org/abs/2506.08300) (Section 4.5).
17
 
18
+ Code: https://github.com/instdin/institutional-books-1-pipeline
19
+
20
  ## Base model
21
  [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)
22
 
 
90
  """
91
 
92
  pipe = pipeline("text-classification", model="instdin/institutional-books-topic-classifier-bert")
93
+ result = pipe(to_label.strip())
94
  print(result[0]) # {'label': 'SCIENCE', 'score': 0.9996894598007202}
95
  ```
96