irridileepkumar's picture
Upload 219 files
c4bfc74 verified
raw
history blame
41.5 kB
# Copyright 2023-present Daniel Han-Chen & the Unsloth team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import AutoTokenizer
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers import PreTrainedTokenizerFast
import re
import os
from transformers.models.llama.modeling_llama import logger
from peft import PeftModelForCausalLM
import torch
import itertools
import collections
import numpy as np
import gc
import subprocess
from unsloth_zoo.tokenizer_utils import (
mean_of_trained_tokens,
add_new_tokens,
fix_untrained_tokens,
)
from unsloth_zoo.training_utils import (
fix_zero_training_loss,
)
__all__ = [
"load_correct_tokenizer",
"fix_sentencepiece_tokenizer",
"check_tokenizer",
"add_new_tokens",
"fix_sentencepiece_gguf",
]
IGNORED_TOKENIZER_CHECKING = frozenset((
"CodeLlamaTokenizerFast",
"CodeLlamaTokenizer",
))
IGNORED_TOKENIZER_NAMES = [
# Qwen Coder did not train on tool calling. Math did!
"unsloth/Qwen2.5-Coder-1.5B-Instruct",
"unsloth/Qwen2.5-Coder-7B-Instruct",
]
IGNORED_TOKENIZER_NAMES = frozenset(
[x.lower() for x in IGNORED_TOKENIZER_NAMES] + \
[x.lower()+"-bnb-4bit" for x in IGNORED_TOKENIZER_NAMES]
)
# Check environments
keynames = "\n" + "\n".join(os.environ.keys())
IS_COLAB_ENVIRONMENT = "\nCOLAB_" in keynames
IS_KAGGLE_ENVIRONMENT = "\nKAGGLE_" in keynames
KAGGLE_TMP = "/tmp"
del keynames
def try_fix_tokenizer(tokenizer, prepend = True):
if hasattr(tokenizer, "_tokenizer"):
converted_tokenizer = tokenizer._tokenizer
else:
converted_tokenizer = convert_slow_tokenizer(tokenizer)
pass
tokenizer_string = converted_tokenizer.to_str()
# Llama does _apple. Sometimes this is wrong!!
prepend_text = '{"type":"Prepend","prepend":"▁"},'
if not prepend and prepend_text in tokenizer_string:
tokenizer_string = tokenizer_string.replace(prepend_text, "", 1)
pass
dir_names = dir(tokenizer)
# Get eos_token, bos_token etc
token_names = [x for x in dir_names if x.endswith("_token") and x.count("_") == 1]
for token_name in token_names:
token = getattr(tokenizer, token_name, None)
if token is None: continue
token_id = getattr(tokenizer, token_name + "_id", None)
# Locate the token's id mapping in the string
find_text = f'"id":{token_id},"content":"'
start = tokenizer_string.find(find_text) + len(find_text)
if start == -1: continue
end = tokenizer_string.find('",', start)
bad_token = tokenizer_string[start : end]
# Check if token is the actual same one - if not, edit it
if bad_token != token:
bad_text = f'{find_text}{bad_token}",'
good_text = f'{find_text}{token}",'
tokenizer_string = tokenizer_string.replace(bad_text, good_text, 1)
# And replace vocab section
bad_text = f'"{bad_token}":{token_id},'
good_text = f'"{token}":{token_id},'
tokenizer_string = tokenizer_string.replace(bad_text, good_text, 1)
pass
pass
fixed_tokenizer = converted_tokenizer.from_str(tokenizer_string)
return fixed_tokenizer
pass
def get_sorted_dict(dictionary):
sorted_keys = sorted(dictionary.values())
inverted_dictionary = { value : key for key, value in dictionary.items() }
sorted_dictionary = {}
for key in sorted_keys:
value = inverted_dictionary[key]
sorted_dictionary[value] = key
return sorted_dictionary
pass
def convert_to_fast_tokenizer(
slow_tokenizer,
temporary_location = "_unsloth_sentencepiece_temp",
):
is_fast = getattr(slow_tokenizer, "is_fast", False)
if is_fast: return slow_tokenizer
try:
tokenizer_name = slow_tokenizer.__class__.__name__
lowered_tokenizer_name = tokenizer_name.lower()
if lowered_tokenizer_name.endswith("tokenizer"):
class_name = lowered_tokenizer_name[:-len("tokenizer")]
FastTokenizer = eval(
f'__import__(f"transformers.models.{class_name}").{tokenizer_name}Fast'
)
else:
FastTokenizer = PreTrainedTokenizerFast
except:
FastTokenizer = PreTrainedTokenizerFast
pass
# Get all arguments (bos_token, etc)
docs = FastTokenizer.__doc__
docs = docs[docs.find("Args:"):]
args = re.findall(r"\n[\s]+([^\s]{1,}) \(", docs, flags = re.MULTILINE)
args = [x for x in args if not x.endswith("_file")]
# Also some missing maybe!
docs = PreTrainedTokenizerFast.__doc__
docs = docs[docs.find("Args:"):]
args2 = re.findall(r"\n[\s]+([^\s]{1,}) \(", docs, flags = re.MULTILINE)
args2 = [x for x in args2 if not x.endswith("_file")]
args = list(set(args + args2))
kwargs = {}
for arg in args: kwargs[arg] = getattr(slow_tokenizer, arg, None)
kwargs["tokenizer_object"] = try_fix_tokenizer(slow_tokenizer, prepend = True)
fast_tokenizer = FastTokenizer( **kwargs )
# Check if they're similar!
sorted_slow_tokenizer = get_sorted_dict(slow_tokenizer.get_vocab())
sorted_fast_tokenizer = get_sorted_dict(fast_tokenizer.get_vocab())
check_vocab = (sorted_slow_tokenizer == sorted_fast_tokenizer)
check_special = (slow_tokenizer.all_special_tokens == fast_tokenizer.all_special_tokens)
# Failure so return slow_tokenizer
if not check_vocab or not check_special: return slow_tokenizer
# Now confirm if they match
if not assert_same_tokenization(slow_tokenizer, fast_tokenizer):
# Maybe remove prepending of __apple?
kwargs["tokenizer_object"] = try_fix_tokenizer(slow_tokenizer, prepend = False)
fast_tokenizer = FastTokenizer( **kwargs )
if not assert_same_tokenization(slow_tokenizer, fast_tokenizer):
# Failure :(
return slow_tokenizer
pass
pass
# Also tokenizer.model is missing!
name = slow_tokenizer.name_or_path.replace("/", "_")
if not os.path.exists(temporary_location):
os.makedirs(temporary_location)
pass
new_location = f"{temporary_location}/{name}"
slow_tokenizer.save_pretrained(new_location)
fast_tokenizer.save_pretrained(new_location)
# Now load it!
fast_tokenizer = AutoTokenizer.from_pretrained(new_location)
if assert_same_tokenization(slow_tokenizer, fast_tokenizer):
return fast_tokenizer
return slow_tokenizer
pass
# Check Mistral chat template without BOS / EOS
mistral_template = \
"{% if messages[0]['role'] == 'system' %}"\
"{% if messages[1]['role'] == 'user' %}"\
"{{ '[INST] ' + messages[0]['content'] + ' ' + messages[1]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[2:] %}"\
"{% else %}"\
"{{ '[INST] ' + messages[0]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% endif %}"\
"{% else %}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '[INST] ' + message['content'] + ' [/INST]' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ message['content'] }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"
pass
# Check Llama chat template without BOS / EOS
llama_template = \
"{% if messages[0]['role'] == 'system' %}"\
"{% if messages[1]['role'] == 'user' %}"\
"{{ '[INST] <<SYS>>\n' + messages[0]['content'] + '\n<</SYS>>\n\n' + messages[1]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[2:] %}"\
"{% else %}"\
"{{ '[INST] ' + messages[0]['content'] + ' [/INST]' }}"\
"{% set loop_messages = messages[1:] %}"\
"{% endif %}"\
"{% else %}"\
"{% set loop_messages = messages %}"\
"{% endif %}"\
"{% for message in loop_messages %}"\
"{% if message['role'] == 'user' %}"\
"{{ '[INST] ' + message['content'].strip() + ' [/INST]' }}"\
"{% elif message['role'] == 'assistant' %}"\
"{{ ' ' + message['content'].strip() + ' ' }}"\
"{% else %}"\
"{{ raise_exception('Only user and assistant roles are supported!') }}"\
"{% endif %}"\
"{% endfor %}"
pass
def assert_same_tokenization(slow_tokenizer, fast_tokenizer):
# Get eos_token, bos_token etc
dir_names = dir(slow_tokenizer)
special_tokens = list(filter(None, (
getattr(slow_tokenizer, x) for x in dir_names
if x.endswith("_token") and x.count("_") == 1
)))
all_special_tokens = list(set(special_tokens + slow_tokenizer.all_special_tokens))
# Check if chat template is enabled!
check_chat_template1 = True
check_chat_template2 = True
check_chat_template3 = True
"""
Weirdly Mistral tokenizers are actually correct??
Ie below will actually load mistral v1 and v3 incorrectly!
slow_chat_template = getattr(slow_tokenizer, "chat_template", None)
fast_chat_template = getattr(fast_tokenizer, "chat_template", None)
messages = [
{"role": "user", "content": " What is 2+2? "},
{"role": "assistant", "content": " It's 4. "},
]
# Check the tokenizer's own chat template
if slow_chat_template is not None and fast_chat_template is not None:
check_chat_template1 = \
slow_tokenizer.apply_chat_template(messages) == \
fast_tokenizer.apply_chat_template(messages)
pass
# Check Mistral chat template without BOS / EOS
slow_tokenizer.chat_template = mistral_template
fast_tokenizer.chat_template = mistral_template
check_chat_template2 = \
slow_tokenizer.apply_chat_template(messages) == \
fast_tokenizer.apply_chat_template(messages)
pass
# Check Llama chat template without BOS / EOS
slow_tokenizer.chat_template = llama_template
fast_tokenizer.chat_template = llama_template
check_chat_template3 = \
slow_tokenizer.apply_chat_template(messages) == \
fast_tokenizer.apply_chat_template(messages)
pass
# Combine them all and revert chat templates
slow_tokenizer.chat_template = slow_chat_template
fast_tokenizer.chat_template = fast_chat_template
"""
check_chat_template = check_chat_template1 and check_chat_template2 and check_chat_template3
# Try special tokens
try:
string = "\n".join(all_special_tokens) + \
"A quick brown fox jumps over the lazy dog!!\n\nHi</s>\n\n" + \
"".join(all_special_tokens)
check_special_tokens = \
slow_tokenizer(string).input_ids == \
fast_tokenizer(string).input_ids
return check_chat_template and check_special_tokens
except:
# For eg see https://github.com/unslothai/unsloth/issues/292
# Sometimes tokenizer has weird tokens, causing a combined tokenization to fail.
# [TODO] We temporarily disable this for CodeLlama tokenizers
if slow_tokenizer.__repr__().split("(", 1)[0] in IGNORED_TOKENIZER_CHECKING:
return check_chat_template
else:
return False
pass
pass
def fix_sentencepiece_tokenizer(
old_tokenizer,
new_tokenizer,
token_mapping,
temporary_location = "_unsloth_sentencepiece_temp",
):
# From https://github.com/google/sentencepiece/issues/121
# We need to manually edit the sentencepiece tokenizer!
from transformers.utils import sentencepiece_model_pb2
if not os.path.exists(temporary_location):
os.makedirs(temporary_location)
pass
# Check if tokenizer.model exists
if not os.path.isfile(f"{temporary_location}/tokenizer.model"):
return new_tokenizer
pass
# First save the old tokenizer
old_tokenizer.save_pretrained(temporary_location)
tokenizer_file = sentencepiece_model_pb2.ModelProto()
tokenizer_file.ParseFromString(open(f"{temporary_location}/tokenizer.model", "rb").read())
# Now save the new tokenizer
new_tokenizer.save_pretrained(temporary_location)
# Now correct the old tokenizer's .model file
for old_token, new_token in token_mapping.items():
ids = old_tokenizer([old_token], add_special_tokens = False).input_ids
ids = ids[0]
if (len(ids) != 1):
# Skip this token!
print(f"Skip mapping {old_token} to {new_token} since {new_token} is already in the tokenizer!")
continue
pass
ids = ids[0]
# [TODO] Hack for Starling - try except
try:
tokenizer_piece = tokenizer_file.pieces[ids]
except:
continue
assert(tokenizer_piece.piece == old_token)
tokenizer_piece.piece = new_token
pass
# And now write it
with open(f"{temporary_location}/tokenizer.model", "wb") as file:
file.write(tokenizer_file.SerializeToString())
pass
# And load it!
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
temporary_location,
eos_token = new_tokenizer.eos_token,
pad_token = new_tokenizer.pad_token,
)
return tokenizer
pass
def fix_sentencepiece_gguf(saved_location):
"""
Fixes sentencepiece tokenizers which did not extend the vocabulary with
user defined tokens.
Inspiration from https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py
"""
from copy import deepcopy
from transformers.utils import sentencepiece_model_pb2
import json
from enum import IntEnum
class SentencePieceTokenTypes(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
pass
# Load tokenizer.model
tokenizer_file = sentencepiece_model_pb2.ModelProto()
if not os.path.isfile(f"{saved_location}/tokenizer.model"): return
tokenizer_file.ParseFromString(open(f"{saved_location}/tokenizer.model", "rb").read())
sentence_piece_size = len(tokenizer_file.pieces)
# Load added_tokens_json
if not os.path.isfile(f"{saved_location}/added_tokens.json"): return
with open(f"{saved_location}/added_tokens.json", "r", encoding = "utf-8") as file:
added_tokens_json = json.load(file)
pass
if len(added_tokens_json) == 0: return
added_tokens_json = dict(sorted(added_tokens_json.items(), key = lambda item: item[1]))
new_size = sentence_piece_size + len(added_tokens_json)
# Confirm added_tokens_json is correct
added_tokens_ids = np.array(list(added_tokens_json.values()))
diff = np.diff(added_tokens_ids)
if (diff.min() != 1 or diff.max() != 1): return
if (added_tokens_ids.min() != sentence_piece_size): return
# Edit sentence piece tokens with added_tokens_json
logger.warning(
f"Unsloth: Extending {saved_location}/tokenizer.model with added_tokens.json.\n"\
f"Originally tokenizer.model is of size ({sentence_piece_size}).\n"\
f"But we need to extend to sentencepiece vocab size ({new_size})."
)
new_tokens = deepcopy(tokenizer_file.pieces[-len(added_tokens_ids):])
for new_token, added_token in zip(new_tokens, added_tokens_json.keys()):
new_token.piece = added_token.encode("utf-8")
new_token.score = -1000.0
new_token.type = SentencePieceTokenTypes.USER_DEFINED
pass
tokenizer_file.pieces.extend(new_tokens)
with open(f"{saved_location}/tokenizer.model", "wb") as file:
file.write(tokenizer_file.SerializeToString())
pass
# Add padding tokens
# actual_vocab_size = model.config.vocab_size
# padding = actual_vocab_size - len(tokenizer_file.pieces)
return
pass
def _load_correct_tokenizer(
tokenizer_name,
model_max_length = None,
padding_side = "right",
token = None,
trust_remote_code = False,
cache_dir = "huggingface_tokenizers_cache",
fix_tokenizer = True,
):
if IS_COLAB_ENVIRONMENT:
cache_dir = cache_dir
elif IS_KAGGLE_ENVIRONMENT:
# /tmp of Kaggle seems has a 80GB limit!
# Let's utilize them
cache_dir = os.path.join(KAGGLE_TMP, cache_dir)
else:
cache_dir = None
pass
# Try loading the slow tokenizer. If it fails, then try Fast only
# Mainly to solve Deepseek models with no tokenizer.model file
slow_tokenizer = None
try:
slow_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
model_max_length = model_max_length,
padding_side = padding_side,
token = token,
trust_remote_code = trust_remote_code,
# Cannot just use use_fast = False as per https://twitter.com/danielhanchen/status/1789659394302718373
use_fast = False,
legacy = False,
from_slow = True,
cache_dir = cache_dir,
)
except:
pass
# print(
# f"Unsloth: {tokenizer_name} has no tokenizer.model file.\n"\
# "Just informing you about this - this is not a critical error."
# )
pass
fast_tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
model_max_length = model_max_length,
padding_side = padding_side,
token = token,
trust_remote_code = trust_remote_code,
cache_dir = cache_dir,
)
if not fix_tokenizer or tokenizer_name in IGNORED_TOKENIZER_NAMES:
return fast_tokenizer
# Ignore Mistral ones - they're a bit weird to handle!
elif "mistral" in tokenizer_name.lower():
return fast_tokenizer
elif slow_tokenizer is not None:
if hasattr(fast_tokenizer, "add_bos_token") and hasattr(slow_tokenizer, "add_bos_token"):
fast_tokenizer.add_bos_token = slow_tokenizer.add_bos_token
if hasattr(fast_tokenizer, "add_eos_token") and hasattr(slow_tokenizer, "add_eos_token"):
fast_tokenizer.add_eos_token = slow_tokenizer.add_eos_token
# Confirm if slow and fast are equivalent!
if assert_same_tokenization(slow_tokenizer, fast_tokenizer):
return fast_tokenizer
else:
logger.warning(f"Unsloth: Will load {tokenizer_name} as a legacy tokenizer.")
return convert_to_fast_tokenizer(slow_tokenizer)
pass
else:
return fast_tokenizer
pass
pass
def load_correct_tokenizer(
tokenizer_name,
model_max_length = None,
padding_side = "right",
token = None,
trust_remote_code = False,
cache_dir = "huggingface_tokenizers_cache",
fix_tokenizer = True,
):
tokenizer = _load_correct_tokenizer(
tokenizer_name = tokenizer_name,
model_max_length = model_max_length,
padding_side = padding_side,
token = token,
trust_remote_code = trust_remote_code,
cache_dir = cache_dir,
fix_tokenizer = fix_tokenizer,
)
### 1. Fixup tokenizer's chat_template
old_chat_template = getattr(tokenizer, "chat_template", None)
# Ignore mistral type models since they don't have a add_generation_prompt
if "mistral" in str(getattr(tokenizer, "name_or_path", "")).lower():
chat_template = old_chat_template
# Also check Llama-2 old style models
elif old_chat_template is not None and \
"[/INST]" in old_chat_template and "[INST]" in old_chat_template and \
"bos_token" in old_chat_template and "eos_token" in old_chat_template:
chat_template = old_chat_template
else:
chat_template = fix_chat_template(tokenizer)
if old_chat_template is not None and chat_template is None:
raise RuntimeError(
"Unsloth: Fixing chat template failed - please file a report immediately!"
)
pass
pass
tokenizer.chat_template = chat_template
return tokenizer
pass
def _find_end_position(template, endfor, endif):
where_endfor = template.find(endfor)
where_endif = template.find(endif)
if where_endfor == where_endif == -1:
return None
elif where_endfor > where_endif:
return endfor
else:
return endif
pass
pass
def _fix_chat_template(chat_template):
endfor = "{% endfor %}"
endif = "{% endif %}"
chosen_end = _find_end_position(chat_template, endfor, endif)
if chosen_end is None:
endfor = "{%- endfor %}"
endif = "{%- endif %}"
chosen_end = _find_end_position(chat_template, endfor, endif)
if chosen_end is None:
return chat_template
where = chat_template.find(chosen_end)
after_endfor = chat_template[where + len(chosen_end):]
dash = "-" if chosen_end.startswith("{%-") else ""
if "{%" + dash + " if" not in after_endfor and "{%" + dash + " set " not in after_endfor and \
after_endfor.startswith("{{") and after_endfor.endswith("}}") and \
after_endfor.count("{{") == 1 and after_endfor.count("}}") == 1:
after_endfor = "{%" + dash + " if add_generation_prompt %}" + after_endfor + endif
chat_template = chat_template[:where + len(chosen_end)] + after_endfor
pass
return chat_template
pass
def fix_chat_template(tokenizer):
chat_template = getattr(tokenizer, "chat_template", None)
if chat_template is None: return None
### 1. Check if add_generation_prompt works
# Check for ShareGPT style first
is_sharegpt = None
try:
messages = [
{"role": "user", "content": "Who are you?"},
]
tokenizer.apply_chat_template(messages, add_generation_prompt = False, tokenize = False)
is_sharegpt = False
except:
try:
messages = [
{"from": "human", "value": "Who are you?"},
]
tokenizer.apply_chat_template(messages, add_generation_prompt = False, tokenize = False)
is_sharegpt = True
except:
is_sharegpt = None
pass
pass
# Not ShareGPT or HF style - just return
if is_sharegpt is None: return chat_template
# Tokenize
messages = [
{"role": "user", "content": "Who are you?"} \
if not is_sharegpt else \
{"from": "human", "value": "Who are you?"}
]
no = tokenizer.apply_chat_template(messages, add_generation_prompt = False, tokenize = False)
yes = tokenizer.apply_chat_template(messages, add_generation_prompt = True, tokenize = False)
if no == yes:
# SAME?! That's not good! We check for add_generation_prompt
if "{% if add_generation_prompt %}" not in chat_template and \
"{%- if add_generation_prompt %}" not in chat_template:
# Try fixing it by adding it
new_chat_template = _fix_chat_template(chat_template)
if "{% if add_generation_prompt %}" not in new_chat_template and \
"{%- if add_generation_prompt %}" not in new_chat_template:
raise RuntimeError(
f"Unsloth: The tokenizer `{tokenizer.name_or_path}`\n"\
"does not have a {% if add_generation_prompt %} for generation purposes.\n"\
"Please file a bug report immediately - thanks!"
)
else:
logger.warning_once(
"Unsloth: We successfully patched the tokenizer to add a {% if add_generation_prompt %} to the chat_template.\n"\
"This is not a bug, but please notify the Unsloth maintainers - thanks!"
)
chat_template = new_chat_template
pass
else:
raise RuntimeError(
f"Unsloth: The tokenizer `{tokenizer.name_or_path}`\n"\
"has a {% if add_generation_prompt %} for generation purposes, but wasn't provided correctly.\n"\
"Please file a bug report immediately - thanks!"
)
pass
pass
return chat_template
pass
def check_tokenizer(
model,
tokenizer,
model_name = "unsloth/llama-2-7b-bnb-4bit",
model_max_length = 4096,
padding_side = "right",
token = None,
_reload = True,
):
# Checks tokenizer for out of bounds ids.
# Mainly a fix for https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha
# where <sep> had token id=32002.
# See https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha/discussions/25
# Seems like the Fast tokenizer in Rust breaks things!
# We ignore some of them!
if tokenizer.__repr__().split("(", 1)[0] in IGNORED_TOKENIZER_CHECKING:
return tokenizer
pass
max_embedding_size = model.model.embed_tokens.weight.shape[0]
added_tokens_fast = tokenizer.added_tokens_decoder
added_tokens_fast = {index : str(value) for index, value in added_tokens_fast.items()}
sorted_keys = sorted(added_tokens_fast)
added_tokens_fast = {key : added_tokens_fast[key] for key in sorted_keys}
for j, index in enumerate(added_tokens_fast.keys()):
if index >= max_embedding_size:
bad_indices = list(added_tokens_fast.keys ())[j:]
bad_tokens = list(added_tokens_fast.values())[j:]
if not _reload:
# Try removing the token
added_tokens = [str(x) for x in tokenizer.added_tokens_decoder.values()]
special_tokens = tokenizer.special_tokens_map
import itertools
special_tokens = frozenset(
itertools.chain.from_iterable(
[x] if type(x) is str else x for x in special_tokens.values()
)
)
can_be_removed1 = [x for x in bad_tokens if x not in special_tokens]
can_be_removed2 = [x for x in can_be_removed1 if x in tokenizer._added_tokens_encoder.keys()]
# Check of extra tokens can in fact we removed!
can_be_removed = \
(len(can_be_removed1) == len(bad_tokens)) and \
(len(can_be_removed2) == len(bad_tokens))
# Check if sep_token or other generic types
remove_generic = False
try_mapper = []
if not can_be_removed:
names = dir(tokenizer)
names = (x for x in names if x.endswith("_token") and x.count("_") == 1)
generic_tokens = [(x, getattr(tokenizer, x, None)) for x in names]
try_removal = []
for token in bad_tokens:
for (name_token, check_token) in generic_tokens:
if check_token == token:
try_removal.append(token)
try_mapper.append(name_token)
pass
pass
pass
# Recheck!
can_be_removed = (len(try_removal) == len(bad_tokens))
if can_be_removed: remove_generic = True
can_be_removed1 = bad_tokens
pass
if can_be_removed:
# Yes it can be fixed!
for j, bad_token in enumerate(can_be_removed1):
remove_id = tokenizer._added_tokens_encoder[bad_token]
del tokenizer._added_tokens_decoder[remove_id]
del tokenizer._added_tokens_encoder[bad_token]
if remove_generic and (try_removal[j] == bad_token):
# Remove sep token for example
setattr(tokenizer, try_mapper[j], None)
setattr(tokenizer, try_mapper[j] + "_id", None)
pass
pass
# Confirm 1 more time!
if max(tokenizer.added_tokens_decoder.keys()) < max_embedding_size:
logger.warning_once(
f"Unsloth loaded a broken tokenizer `{model_name}`, but managed to repair it!\n"\
f"Tokens {bad_tokens} with ids {bad_indices} exceeds the max vocab size of {max_embedding_size}.\n"\
"We removed these bad tokens. If you think this is incorrect, fix your tokenizer first."
)
return convert_to_fast_tokenizer(tokenizer)
pass
pass
# :( Failure
raise RuntimeError(
f"Unsloth tried to load `{model_name}`, but cannot succeed.\n"\
f"Tokens {bad_tokens} with ids {bad_indices} exceeds the max vocab size of {max_embedding_size}.\n"\
f"Fix your tokenizer since it'll perform out of bounds memory accesses."
)
pass
if IS_COLAB_ENVIRONMENT or IS_KAGGLE_ENVIRONMENT:
cache_dir = "huggingface_tokenizers_cache"
else:
cache_dir = None
pass
# Sometimes slow tokenizer does not work like Deepseek
try:
# Try slow tokenizer which can fix things!
tokenizer = AutoTokenizer.from_pretrained(
model_name,
model_max_length = model_max_length,
padding_side = padding_side,
token = token,
# Cannot just use use_fast = False as per https://twitter.com/danielhanchen/status/1789659394302718373
use_fast = False,
legacy = False,
from_slow = True,
cache_dir = cache_dir,
)
return check_tokenizer(
model = model,
tokenizer = tokenizer,
model_name = model_name,
model_max_length = model_max_length,
padding_side = padding_side,
token = token,
_reload = False,
)
break
except:
# Tokenizer has out of bounds issues and we can't
# load the slow tokenizer version :(
logger.warning_once(
"Unsloth: Tokenizer is most likely buggy, and Unsloth failed to repair it.\n"\
"It will still work, but beware of out of bounds memory accesses.\n"\
"Please file an issue on the model owner's repo about this issue."
)
return tokenizer
pass
pass
pass
return convert_to_fast_tokenizer(tokenizer)
pass
def check_nvidia():
# Unsloth doesn't work yet on AMD devices - we're working on it!
output = np.array([0,])
try:
output = subprocess.check_output("nvidia-smi --query-gpu=memory.used --format=csv", shell = True)
output = re.findall(rb'([\d]{1,})[\s]{1,}M', output)
output = np.array([int(x.decode('utf-8'))/1024 for x in output])
except:
if not torch.cuda.is_available():
raise RuntimeError("Unsloth: We do not support AMD / Intel machines yet - it is a work in progress!")
return output
pass
PRE_CHECK = check_nvidia()
import inspect
from inspect import getsource
import trl.trainer.sft_trainer
from trl.trainer.sft_trainer import *
from transformers.trainer import *
try:
from trl.trainer.sft_trainer import neftune_post_forward_hook
except:
def neftune_post_forward_hook(module, input, output):
"""
Implements the NEFTune forward pass for the model using forward hooks. Note this works only for
torch.nn.Embedding layers. This method is slightly adapted from the original source code
that can be found here: https://github.com/neelsjain/NEFTune
Simply add it to your model as follows:
```python
model = ...
model.embed_tokens.neftune_noise_alpha = 0.1
model.embed_tokens.register_forward_hook(neftune_post_forward_hook)
```
Args:
module (`torch.nn.Module`):
The embedding module where the hook is attached. Note that you need to set
`module.neftune_noise_alpha` to the desired noise alpha value.
input (`torch.Tensor`):
The input tensor to the model.
output (`torch.Tensor`):
The output tensor of the model (i.e. the embeddings).
"""
if module.training:
dims = torch.tensor(output.size(1) * output.size(2))
mag_norm = module.neftune_noise_alpha / torch.sqrt(dims)
output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm)
return output
pass
pass
def patch_trl_tokenizer_processing_class(trainer_name):
# New TRL removes tokenizer!
# We return it back!
exec(f"from trl import {trainer_name}", globals())
if str(eval(f"{trainer_name}").__name__).startswith("Unsloth"): return None
parameters = eval(f"inspect.signature({trainer_name}).parameters")
if "tokenizer" in parameters: return None
args = {
key : \
value.default \
if type(value.default) is not str else \
f"'{value.default}'" \
for key, value in parameters.items()
}
args["tokenizer"] = None
new_args = args.copy()
del new_args["tokenizer"]
del new_args["processing_class"]
new_args = ",\n".join(f"{' '*12}{key} = {key}" for key in new_args) + \
f",\n{' '*12}processing_class = tokenizer if tokenizer else processing_class"
args = ",\n".join(f"{' '*8}{key} = {value}" for key, value in args.items())
args = f"def __init__(\n" + f"{' '*8}self,\n" + args + "):"
args += f"\n{' '*8}\n{' '*8}super().__init__(\n{new_args}\n{' '*8})"
new_class = f"""class Unsloth{trainer_name}({trainer_name}):\n{' '*4}{args}\n"""
return new_class
pass
def patch_sft_trainer_tokenizer():
"""
Patches the trainer with changes
"""
for function_name, replacer in (
("_prepare_non_packed_dataloader", "def tokenize(element):",),
# ("_prepare_packed_dataloader", "if dataset_text_field is not None",),
):
function = getsource(eval(f"trl.trainer.sft_trainer.SFTTrainer.{function_name}"))
where = function.find("def")
function = function.split("\n")
function = "\n".join(x[where:] for x in function)
check_text = \
"\n"\
"if 'tokenizer' not in locals(): tokenizer = processing_class\n"\
"if 'formatting_func' not in locals(): raise RuntimeError('Unsloth: Please file a bug report - `formatting_func` does not exist!')\n"\
"if 'dataset_text_field' not in locals(): raise RuntimeError('Unsloth: Please file a bug report - `dataset_text_field` does not exist!')\n"\
"test_text = dataset[0][dataset_text_field] if (formatting_func is None and dataset_text_field is not None) else formatting_func(dataset[0])[0]\n"\
"chat_template = getattr(tokenizer, 'chat_template', None)\n"\
"chat_template = '' if chat_template is None else chat_template\n"\
"has_bos_token_already = (test_text.startswith(tokenizer.bos_token) or tokenizer.bos_token in chat_template) "\
"if getattr(tokenizer, 'bos_token', None) is not None else False\n"\
"add_special_tokens = False if has_bos_token_already else add_special_tokens\n\n"
check_text = check_text.split("\n")
check_text = "\n".join(" "*where + x for x in check_text)
function = function.replace(replacer, check_text + replacer)
exec(function, globals())
exec(f"trl.trainer.sft_trainer.SFTTrainer.{function_name} = {function_name}", globals())
pass
# Patch train with fix_untrained_tokens
for path_to_trainer in \
("sft_trainer.SFTTrainer", "dpo_trainer.DPOTrainer", "kto_trainer.KTOTrainer"):
function_name, replacer = "train", "if resume_from_checkpoint is False:"
function = getsource(eval(f"trl.trainer.{path_to_trainer}.{function_name}"))
where = function.find("def")
function = function.split("\n")
function = "\n".join(x[where:] for x in function)
check_text = \
"\n"\
"import subprocess, re, gc, numpy as np\n"\
"a = np.array([0,])\n"\
"try:\n"\
" a = subprocess.check_output('nvidia-smi --query-gpu=memory.used --format=csv', shell = True)\n"\
" a = re.findall(rb'([\\d]{1,})[\\s]{1,}M', a)\n"\
" a = np.array([int(x.decode('utf-8'))/1024 for x in a])\n"\
"except:\n"\
" if not torch.cuda.is_available():\n"\
" raise RuntimeError('Unsloth: We do not support AMD / Intel machines yet - it is a work in progress!')\n"\
"if ((a - PRE_CHECK) >= 1).sum() > 1:\n"\
" raise RuntimeError('Unsloth currently does not support multi GPU setups - but we are working on it!')\n"\
"for _ in range(3):\n"\
" gc.collect()\n"\
" torch.cuda.empty_cache()\n"\
"pass\n"\
"\n"\
"tokenizer = self.processing_class if hasattr(self, 'processing_class') else self.tokenizer\n"\
"fix_untrained_tokens(self.model, tokenizer, self.train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16)\n\n"\
"fix_zero_training_loss(self.model, tokenizer, self.train_dataset)\n\n"
# Warn on gradient accumulation steps if it's used
check_text += \
"\n"\
"try:\n"\
" gradient_accumulation_steps = self.args.gradient_accumulation_steps\n"\
" if type(gradient_accumulation_steps) is int and gradient_accumulation_steps > 1:\n"\
" from transformers import __version__ as transformers_version\n"\
" from packaging.version import Version\n"\
" if Version(transformers_version) <= Version('4.45.2'):\n"\
" print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\\n'\\\n"\
" '`pip install --upgrade --no-cache-dir --no-deps unsloth transformers git+https://github.com/huggingface/trl.git`')\n"\
"except:\n"\
" pass\n"\
"\n\n"
# Add NEFTune since it doesn't seem to work?? We need to manually inject it
check_text += \
"\n"\
"if hasattr(self, 'neftune_hook_handle'):\n"\
" self.neftune_hook_handle.remove()\n"\
" if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle\n"\
"\n"\
"if getattr(self, 'neftune_noise_alpha', None) is not None:\n"\
" self.model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha\n"\
" self.neftune_hook_handle = self.model.get_input_embeddings().register_forward_hook(neftune_post_forward_hook)\n"\
"pass\n"\
"\n"
# Also DPO weirdly tokenizes non numeric columns? Delete them!
check_text += \
"\n"\
"if hasattr(self.train_dataset, 'column_names'):\n"\
" column_names = set(self.train_dataset.column_names)\n"\
" check = ['chosen', 'rejected', 'prompt', 'chosen_input_ids', 'chosen_attention_mask',\n"\
" 'chosen_labels', 'rejected_input_ids', 'rejected_attention_mask', 'rejected_labels',\n"\
" 'prompt_input_ids', 'prompt_attention_mask']\n"\
" if all(x in column_names for x in check):\n"\
" self.train_dataset = self.train_dataset.remove_columns(['chosen', 'rejected', 'prompt'])\n"\
" del check, column_names\n"\
"\n"
check_text = check_text.split("\n")
check_text = "\n".join(" "*where + x for x in check_text)
function = function.replace(replacer, check_text + replacer)
exec(function, globals())
exec(f"trl.trainer.{path_to_trainer}.{function_name} = {function_name}", globals())
pass
pass
# Fix TRL trainers with removed tokenizer args (got replaced with processing_class)
for trainer_name in ("SFTTrainer", "DPOTrainer", "KTOTrainer"):
trainer_text = patch_trl_tokenizer_processing_class(trainer_name)
if trainer_text is None: continue
try:
exec(trainer_text, globals())
except:
raise RuntimeError(f"Unsloth: Please file a bug report! Error patching {trainer_name}")
exec(f"trl.trainer.{trainer_name} = Unsloth{trainer_name}", globals())
pass
# FInally patch TRL tokenizer things
patch_sft_trainer_tokenizer()