jaksani1 commited on
Commit
b020c57
·
verified ·
1 Parent(s): 161ccc3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -12
README.md CHANGED
@@ -1,12 +1,76 @@
1
- ---
2
- license: apache-2.0
3
- datasets:
4
- - jaksani1/TeluguDataset
5
- language:
6
- - te
7
- - en
8
- base_model:
9
- - google-bert/bert-base-multilingual-cased
10
- tags:
11
- - text
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ My Colloquial Telugu Model
2
+
3
+ Overview
4
+
5
+ This model is fine-tuned on colloquial Telugu text to enhance natural language understanding and generation in informal Telugu conversations. It can be used for chatbots, sentiment analysis, text classification, and other NLP tasks.
6
+
7
+
8
+ ---
9
+
10
+ Model Details
11
+
12
+ Model Name: My Colloquial Telugu Model
13
+
14
+ Base Model: bert-base-multilingual-cased
15
+
16
+ Training Data: Telugu colloquial dataset containing informal conversations
17
+
18
+ Fine-tuning Details:
19
+
20
+ Epochs: 3
21
+
22
+ Batch Size: 16
23
+
24
+ Optimizer: AdamW
25
+
26
+
27
+ Language: Telugu
28
+
29
+
30
+
31
+ ---
32
+
33
+ Usage
34
+
35
+ This model can be used for text generation, classification, and translation.
36
+
37
+ Using the Model in Python
38
+
39
+ To use this model in Python, install the required libraries:
40
+
41
+ pip install transformers torch
42
+
43
+ Then, load the model:
44
+
45
+ from transformers import AutoModel, AutoTokenizer
46
+
47
+ model_name = "your-hf-username/my_colloquial_telugu_model"
48
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
49
+ model = AutoModel.from_pretrained(model_name)
50
+
51
+ text = "ఇవాళ వాతావరణం ఎలా ఉంది?"
52
+ inputs = tokenizer(text, return_tensors="pt")
53
+ outputs = model(**inputs)
54
+ print(outputs)
55
+
56
+
57
+ ---
58
+
59
+ Performance
60
+
61
+ Accuracy/F1 Score: TBD (To Be Determined)
62
+
63
+ Limitations:
64
+
65
+ May struggle with highly formal or technical Telugu text.
66
+
67
+ Performance depends on dataset quality and coverage.
68
+
69
+
70
+
71
+
72
+ ---
73
+
74
+ License
75
+
76
+ This model is released under the Apache 2.0 license.