--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper Tiny en-US - janater123456 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Minds14 type: PolyAI/minds14 metrics: - name: Wer type: wer value: 0.33234946871310506 --- # Whisper Tiny en-US - janater123456 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5693 - Wer Ortho: 0.3418 - Wer: 0.3323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:| | 0.0092 | 8.9286 | 500 | 0.5693 | 0.3418 | 0.3323 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0