File size: 1,322 Bytes
4215fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: mlx
inference: false
base_model: mlx-community/Magistral-Small-2506-bf16
extra_gated_description: If you want to learn more about how we process your personal
  data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
pipeline_tag: text-generation
tags:
- mlx
- mlx
- mlx-my-repo
---

# janboe91/Magistral-Small-2506-bf16-mlx-6Bit

The Model [janboe91/Magistral-Small-2506-bf16-mlx-6Bit](https://huggingface.co/janboe91/Magistral-Small-2506-bf16-mlx-6Bit) was converted to MLX format from [mlx-community/Magistral-Small-2506-bf16](https://huggingface.co/mlx-community/Magistral-Small-2506-bf16) using mlx-lm version **0.22.3**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("janboe91/Magistral-Small-2506-bf16-mlx-6Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```