from typing import Dict, Any, List import random from unsloth import FastLanguageModel import torch max_seq_length = 2048 dtype = None load_in_4bit = True class EndpointHandler: def __init__(self, path=""): self.model, self.tokenizer = FastLanguageModel.from_pretrained( model_name = path, # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit ) FastLanguageModel.for_inference(self.model) # Enable native 2x faster inference # pass def __call__(self, data: Dict[str, Any]) -> Any: inputs = self.tokenizer(data["inputs"], return_tensors = "pt").to("cuda") outputs = self.model.generate(**inputs, max_new_tokens = 64) prompt_length = inputs["input_ids"].shape[1] # Decode the generated output, skipping the tokens corresponding to the prompt text = self.tokenizer.decode(outputs[0][prompt_length:], skip_special_tokens=True, clean_up_tokenization_spaces=True) return text