Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +87 -0
- config.json +28 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_results.csv +13 -0
- merges.txt +0 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: sentence-similarity
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# {MODEL_NAME}
|
| 10 |
+
|
| 11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 12 |
+
|
| 13 |
+
<!--- Describe your model here -->
|
| 14 |
+
|
| 15 |
+
## Usage (Sentence-Transformers)
|
| 16 |
+
|
| 17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 18 |
+
|
| 19 |
+
```
|
| 20 |
+
pip install -U sentence-transformers
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
Then you can use the model like this:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from sentence_transformers import SentenceTransformer
|
| 27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 28 |
+
|
| 29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
| 30 |
+
embeddings = model.encode(sentences)
|
| 31 |
+
print(embeddings)
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Evaluation Results
|
| 37 |
+
|
| 38 |
+
<!--- Describe how your model was evaluated -->
|
| 39 |
+
|
| 40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## Training
|
| 44 |
+
The model was trained with the parameters:
|
| 45 |
+
|
| 46 |
+
**DataLoader**:
|
| 47 |
+
|
| 48 |
+
`torch.utils.data.dataloader.DataLoader` of length 11 with parameters:
|
| 49 |
+
```
|
| 50 |
+
{'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
**Loss**:
|
| 54 |
+
|
| 55 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
| 56 |
+
|
| 57 |
+
Parameters of the fit()-Method:
|
| 58 |
+
```
|
| 59 |
+
{
|
| 60 |
+
"epochs": 1,
|
| 61 |
+
"evaluation_steps": 1,
|
| 62 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
| 63 |
+
"max_grad_norm": 1,
|
| 64 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
| 65 |
+
"optimizer_params": {
|
| 66 |
+
"lr": 2e-05
|
| 67 |
+
},
|
| 68 |
+
"scheduler": "WarmupLinear",
|
| 69 |
+
"steps_per_epoch": null,
|
| 70 |
+
"warmup_steps": 2,
|
| 71 |
+
"weight_decay": 0.01
|
| 72 |
+
}
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
## Full Model Architecture
|
| 77 |
+
```
|
| 78 |
+
SentenceTransformer(
|
| 79 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
| 80 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
| 81 |
+
(2): Normalize()
|
| 82 |
+
)
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Citing & Authors
|
| 86 |
+
|
| 87 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-distilroberta-v1/",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"gradient_checkpointing": false,
|
| 11 |
+
"hidden_act": "gelu",
|
| 12 |
+
"hidden_dropout_prob": 0.1,
|
| 13 |
+
"hidden_size": 768,
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 3072,
|
| 16 |
+
"layer_norm_eps": 1e-05,
|
| 17 |
+
"max_position_embeddings": 514,
|
| 18 |
+
"model_type": "roberta",
|
| 19 |
+
"num_attention_heads": 12,
|
| 20 |
+
"num_hidden_layers": 6,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.16.2",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 50265
|
| 28 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.0.0",
|
| 4 |
+
"transformers": "4.6.1",
|
| 5 |
+
"pytorch": "1.8.1"
|
| 6 |
+
}
|
| 7 |
+
}
|
eval/similarity_evaluation_results.csv
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
| 2 |
+
0,1,0.45892171995983294,0.5136906760016178,0.4480500006536557,0.5136906760016178,0.4538208185638512,0.49970404868474205,0.45892148035278574,0.5136906760016178
|
| 3 |
+
0,2,0.4336270843877642,0.42341335422905624,0.41576341834421354,0.42341335422905624,0.4217401446469101,0.4132412616349648,0.4336271335257007,0.42341335422905624
|
| 4 |
+
0,3,0.3499986701736571,0.2492162685552403,0.31773573574512187,0.2492162685552403,0.314040772546085,0.22124301392148887,0.34999811942626746,0.2492162685552403
|
| 5 |
+
0,4,0.31265979468790317,0.1894552245649531,0.27286963351619414,0.1894552245649531,0.26246153933199057,0.1296941805746659,0.31266011544144784,0.1894552245649531
|
| 6 |
+
0,5,0.3218422038296091,0.22124301392148887,0.27823331363036974,0.22124301392148887,0.2608168527527259,0.15512441205989447,0.3218424832364223,0.22124301392148887
|
| 7 |
+
0,6,0.332789473538533,0.26447440744637746,0.28680091084906456,0.26447440744637746,0.26401944945779493,0.18436917826790739,0.3327895330513663,0.26447440744637746
|
| 8 |
+
0,7,0.3258309349135759,0.21234243290165886,0.27796750597138814,0.21234243290165886,0.2532409434146122,0.12715115742614302,0.32583037653512426,0.21234243290165886
|
| 9 |
+
0,8,0.3273312491066775,0.24413022225819456,0.27775084625932117,0.24413022225819456,0.251878680346386,0.15893894678267878,0.3273309257438753,0.24413022225819456
|
| 10 |
+
0,9,0.3259744891270688,0.24413022225819456,0.2757345748899191,0.24413022225819456,0.24908663427154365,0.18055464354512307,0.3259746906431779,0.24413022225819456
|
| 11 |
+
0,10,0.33823291410351386,0.2581168495750703,0.2881122635596565,0.2581168495750703,0.2622311119772618,0.2199715023472274,0.33823268102542015,0.2581168495750703
|
| 12 |
+
0,11,0.3461446144842104,0.2581168495750703,0.29619977212433857,0.2581168495750703,0.27099007670581826,0.2199715023472274,0.3461443467964613,0.2581168495750703
|
| 13 |
+
0,-1,0.3461446144842104,0.2581168495750703,0.29619977212433857,0.2581168495750703,0.27099007670581826,0.2199715023472274,0.3461443467964613,0.2581168495750703
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6ea82f1842ed02592f3007bf50a46cc3d5b1cc43b6583ccef948d92544524d3
|
| 3 |
+
size 328517361
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
| 2 |
+
-1,-1,0.763199158207649,0.387052531119154,0.7482557311349456,0.387052531119154,0.7450649094260047,0.4043754800725933,0.7631991923155116,0.38697783338492403
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "add_prefix_space": false, "errors": "replace", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": "<mask>", "trim_offsets": true, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-distilroberta-v1/", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|