jfarray commited on
Commit
fef5291
·
1 Parent(s): a2620c6

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bd77f62b624e9b87cff2e3a14c3c5a0dd5d09f449aa51f1993f7b205e73ea60
3
+ size 1575975
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `torch.utils.data.dataloader.DataLoader` of length 11 with parameters:
49
+ ```
50
+ {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 5,
61
+ "evaluation_steps": 1,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 2e-05
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 6,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
80
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
81
+ (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
82
+ )
83
+ ```
84
+
85
+ ## Citing & Authors
86
+
87
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_distiluse-base-multilingual-cased-v1/",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.16.2",
23
+ "vocab_size": 119547
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
eval/similarity_evaluation_results.csv ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,1,0.3025718391868595,0.4246848658033177,0.30613216767618595,0.3839964954269519,0.291456965945577,0.33695056717927896,0.31795452080383496,0.37382440283286045
3
+ 0,2,0.2985543805179341,0.35856626394172325,0.30293548803669196,0.4170557963577491,0.28707919786327313,0.3394935903278018,0.31368954415393535,0.3839964954269519
4
+ 0,3,0.2948806595972096,0.37509591440712187,0.2998300286659284,0.2937191736543904,0.2813653690682321,0.30134824309995895,0.2991882443023452,0.4081552153379191
5
+ 0,4,0.2708667275158094,0.29244766208012896,0.2829053279837404,0.2733749884662075,0.2607298519245949,0.2593883611493318,0.2132082501534736,0.227600571792796
6
+ 0,5,0.21546140654265805,0.3064342893970047,0.241910195199202,0.25557382642654747,0.21567566878683217,0.2530308032780246,0.0870004585448148,-0.00762906944556858
7
+ 0,6,0.1577197102451607,0.14622383104006448,0.1914401246234708,0.2670174305949003,0.15957357404062553,0.2530308032780246,0.009800900073892093,-0.11825057640631301
8
+ 0,7,0.12028306015014319,0.00890058101983001,0.15016308504547612,0.18055464354512307,0.11409534447698914,0.09409185649534582,-0.02732687094503517,-0.19326975928773737
9
+ 0,8,0.11808005954862609,-0.03941685880210433,0.13731238345995667,0.06611860186159436,0.10305786265685127,0.03941685880210433,-0.0265460906078526,-0.18182615511938452
10
+ 0,9,0.12573513986085647,-0.0673901134358558,0.13527652796951495,0.0025430231485228604,0.1045820315956538,-0.024158719910967172,-0.019203002729997726,-0.17038255095103164
11
+ 0,10,0.13018012427988795,-0.1296941805746659,0.13130762303748242,-0.05340348611898007,0.10402412108449877,-0.05594650926750292,-0.01323731838003491,-0.15639592363415591
12
+ 0,11,0.12024506547176056,-0.17928313197086163,0.11124254295864748,-0.13223720372318873,0.08685951782303225,-0.12079359955483586,-0.02026566030156981,-0.12333662270335873
13
+ 0,-1,0.12024506547176056,-0.17928313197086163,0.11124254295864748,-0.13223720372318873,0.08685951782303225,-0.12079359955483586,-0.02026566030156981,-0.12333662270335873
14
+ 1,1,0.11929186960179988,-0.24158719910967172,0.10138293991990371,-0.1678395278025088,0.0809798059904554,-0.20598487503035168,-0.019897855203361427,-0.14495231946580303
15
+ 1,2,0.12551841231479352,-0.24285871068393314,0.10159371277711308,-0.24794475698097887,0.08513668970478985,-0.18691220141643022,-0.010348278213374116,-0.14495231946580303
16
+ 1,3,0.1288130793485645,-0.2949906852286518,0.10205777047162358,-0.28863312735734464,0.08660927751385662,-0.28481859263456033,-0.001018403157467378,-0.12206511112909728
17
+ 1,4,0.12225948784104368,-0.3089773125455275,0.09553138526480213,-0.31660638199109614,0.08189408813787952,-0.2911761505058675,0.001154655519706801,-0.12206511112909728
18
+ 1,5,0.10619725315856415,-0.32677847458518755,0.0810343465183453,-0.31279184726831183,0.06993162957477353,-0.2873616157830832,-0.006606949983556067,-0.1436808078915416
19
+ 1,6,0.09882766699625256,-0.34076510190206327,0.0780378419150875,-0.31660638199109614,0.06889732512474629,-0.26447440744637746,-0.00507742739854619,-0.16529650465398593
20
+ 1,7,0.10781613782687703,-0.31787789356535756,0.09193238656596735,-0.2873616157830832,0.0843169320911732,-0.2568453380008089,0.009167048825363134,-0.22124301392148887
21
+ 1,8,0.12512119602005806,-0.28863312735734464,0.11347309100788547,-0.2873616157830832,0.1071272662203599,-0.24540173383245603,0.03338351744814319,-0.20725638660461312
22
+ 1,9,0.16188577073590543,-0.24540173383245603,0.15340408838123118,-0.20344185188182884,0.1482237137558179,-0.20598487503035168,0.07798341459756108,-0.20725638660461312
23
+ 1,10,0.23818381190269816,-0.14876685418858734,0.22505293582023744,-0.12460813427762014,0.2195211811496611,-0.12079359955483586,0.171642095248389,-0.15766743520841733
24
+ 1,11,0.3320567027054103,-0.022887208336705742,0.30234093256568845,-0.011443604168352871,0.29791010712042704,0.022887208336705742,0.3153215258863345,0.0890058101983001
25
+ 1,-1,0.3320567027054103,-0.022887208336705742,0.30234093256568845,-0.011443604168352871,0.29791010712042704,0.022887208336705742,0.3153215258863345,0.0890058101983001
26
+ 2,1,0.39911700727080496,0.10426394908943727,0.3542693300215132,0.0928203449210844,0.3514602948285451,0.13732325002023446,0.4368591070741805,0.2199715023472274
27
+ 2,2,0.4448017186563348,0.20852789817887454,0.3888936889792038,0.21615696762444314,0.38861482530454317,0.1983558055847831,0.5282831690398538,0.3356790556050176
28
+ 2,3,0.46777391406112984,0.2975337083771747,0.4086411719684652,0.2581168495750703,0.41263431844611964,0.2492162685552403,0.5712584169223932,0.47554532877377487
29
+ 2,4,0.47453236865665593,0.3331360324564947,0.41911719328726693,0.3331360324564947,0.42853120666316974,0.32296393986240324,0.5704594905987236,0.5200482338729249
30
+ 2,5,0.46885588254477456,0.40052614589235047,0.42148875525140056,0.3496656829218933,0.4353310130308779,0.32550696301092613,0.5450033194294011,0.6065110209227021
31
+ 2,6,0.4608119676186498,0.40179765746661195,0.42083990693999446,0.36365231023876904,0.4376363657945836,0.32550696301092613,0.5221534037042279,0.5810807894374735
32
+ 2,7,0.448998626112117,0.46791625932820624,0.41725316335595697,0.4246848658033177,0.4364978353669731,0.36110928709024614,0.4946859714340146,0.5861668357345192
33
+ 2,8,0.4387133684656251,0.47300230562525203,0.41283892644243225,0.41196975006070335,0.4334050139940764,0.41069823848644194,0.47540830314009397,0.5365778843383234
34
+ 2,9,0.43101205937169806,0.4793598634965592,0.41087531869517846,0.44248602784297775,0.4321957958312434,0.41451277320922625,0.4589377942170413,0.5480214885066763
35
+ 2,10,0.42541616703261526,0.4793598634965592,0.407895457774992,0.44248602784297775,0.43007870114058033,0.41451277320922625,0.45047617862147077,0.5480214885066763
36
+ 2,11,0.4207022342142904,0.4933464908134349,0.4052393011545259,0.42214184265479476,0.4278683437606058,0.41451277320922625,0.44372405663630066,0.5480214885066763
37
+ 2,-1,0.4207022342142904,0.4933464908134349,0.4052393011545259,0.42214184265479476,0.4278683437606058,0.41451277320922625,0.44372405663630066,0.5480214885066763
38
+ 3,1,0.42291163646155355,0.5187767222986636,0.4057467067437654,0.44248602784297775,0.4292542925682343,0.41451277320922625,0.4493759059128363,0.5480214885066763
39
+ 3,2,0.4253356221141848,0.5187767222986636,0.4069114752512048,0.3928970764467819,0.43080272160411814,0.41451277320922625,0.45428086985611194,0.5480214885066763
40
+ 3,3,0.4284129606765113,0.5327633496155393,0.40879267990241036,0.3928970764467819,0.4328135231371981,0.41451277320922625,0.4594024099200183,0.564551138972075
41
+ 3,4,0.43681171175405475,0.5442069537838921,0.4139501131736865,0.39035405329825906,0.43732358637838226,0.4259563773775791,0.47238104711452,0.5976104399028722
42
+ 3,5,0.4448822128740915,0.5225912570214478,0.41850970918514935,0.36873835653581477,0.44135810892328003,0.4043406806151348,0.48649620493378576,0.5925243936058264
43
+ 3,6,0.4516506873567684,0.5149621875758792,0.4226490957104752,0.3801819607041676,0.44516228286723797,0.4043406806151348,0.4970585747725655,0.5925243936058264
44
+ 3,7,0.4573688079942609,0.4933464908134349,0.4256209794337457,0.3941685880210433,0.4478277111654164,0.37382440283286045,0.5083279504136763,0.6090540440712251
45
+ 3,8,0.4581300365493108,0.49080346766491206,0.4250534262017661,0.4043406806151348,0.4467396916714765,0.32042091671388034,0.5135537844768128,0.5594650926750293
46
+ 3,9,0.459120685242654,0.4691877709024677,0.42583859519913747,0.4157842847834876,0.44669603133315516,0.3712813796843376,0.513935662620459,0.5594650926750293
47
+ 3,10,0.4588580855644411,0.4691877709024677,0.42560090912412346,0.4157842847834876,0.44599049380451955,0.34839417134763184,0.5135032154683755,0.5594650926750293
48
+ 3,11,0.46179856848043505,0.455201143585592,0.42824459087967753,0.3941685880210433,0.44833461625120435,0.34839417134763184,0.5171129028150943,0.5454784653581536
49
+ 3,-1,0.46179856848043505,0.455201143585592,0.42824459087967753,0.3941685880210433,0.44833461625120435,0.34839417134763184,0.5171129028150943,0.5454784653581536
50
+ 4,1,0.4636931847398887,0.4412145162687163,0.4302617578325815,0.4195988195062719,0.45002105959574246,0.34076510190206327,0.5185739184618975,0.5861668357345192
51
+ 4,2,0.4643119909191134,0.4412145162687163,0.431214320334426,0.4195988195062719,0.4505834994855208,0.34076510190206327,0.5181779829048649,0.564551138972075
52
+ 4,3,0.4640480944676634,0.4412145162687163,0.4314383558666997,0.4399430046944548,0.45065239533858603,0.34076510190206327,0.5163553232231457,0.5429354422096307
53
+ 4,4,0.46425579749548007,0.4412145162687163,0.432069452744855,0.4399430046944548,0.45106272717230633,0.34076510190206327,0.5147551231666027,0.5429354422096307
54
+ 4,5,0.46427291871119764,0.42722788895184055,0.4325232961519265,0.4399430046944548,0.45132542150795657,0.3801819607041676,0.5131631905913656,0.5149621875758792
55
+ 4,6,0.46466614679574614,0.4412145162687163,0.4332551599740904,0.4539296320113305,0.4519220748232407,0.3801819607041676,0.5123181701586522,0.5365778843383234
56
+ 4,7,0.4660194294850445,0.4412145162687163,0.43463814080907104,0.4539296320113305,0.453047125203664,0.3801819607041676,0.5124985959781172,0.5581935811007678
57
+ 4,8,0.4669391371107265,0.4412145162687163,0.43563146156834986,0.4539296320113305,0.45393471742146607,0.3801819607041676,0.5128458698810344,0.5581935811007678
58
+ 4,9,0.4674894222170324,0.4412145162687163,0.4362151158297517,0.4539296320113305,0.45443083009955854,0.4056121921893962,0.5127869926962785,0.5581935811007678
59
+ 4,10,0.4677770953053779,0.4412145162687163,0.43652127729258067,0.4539296320113305,0.45464826873276115,0.4056121921893962,0.5124113246662438,0.5365778843383234
60
+ 4,11,0.467723431462303,0.4539296320113305,0.43652900031897535,0.4539296320113305,0.4546115758094012,0.4056121921893962,0.5119006278283414,0.5365778843383234
61
+ 4,-1,0.467723431462303,0.4539296320113305,0.43652900031897535,0.4539296320113305,0.4546115758094012,0.4056121921893962,0.5119006278283414,0.5365778843383234
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4737d3abfda90a3a142c3957ccdf675f69756086d9a8886ba974e603f984fc7
3
+ size 538972985
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.8071137523291612,0.5580557129550283,0.8064290694803197,0.5596320038072644,0.803044175287227,0.5581369650608138,0.8092034392530782,0.5565444237874208
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "max_len": 512, "special_tokens_map_file": "old_models/distiluse-base-multilingual-cased-v1/0_Transformer/special_tokens_map.json", "name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_distiluse-base-multilingual-cased-v1/", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "DistilBertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff