Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
First we define a class T5ClassificationModel:
|
5 |
+
```python
|
6 |
+
from transformers import (
|
7 |
+
T5Config,
|
8 |
+
T5EncoderModel,
|
9 |
+
T5Tokenizer,
|
10 |
+
PreTrainedModel,
|
11 |
+
TrainingArguments,
|
12 |
+
Trainer,
|
13 |
+
DataCollatorWithPadding,
|
14 |
+
)
|
15 |
+
class T5ClassificationModel(PreTrainedModel):
|
16 |
+
config_class = T5Config
|
17 |
+
|
18 |
+
def __init__(self, config, d_model=None, num_classes=2):
|
19 |
+
super().__init__(config)
|
20 |
+
self.num_classes = num_classes
|
21 |
+
|
22 |
+
self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
|
23 |
+
|
24 |
+
hidden_dim = d_model if d_model is not None else config.d_model
|
25 |
+
self.classification_head = nn.Linear(hidden_dim, num_classes)
|
26 |
+
|
27 |
+
def forward(
|
28 |
+
self,
|
29 |
+
input_ids=None,
|
30 |
+
attention_mask=None,
|
31 |
+
labels=None,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
35 |
+
hidden_states = encoder_outputs.last_hidden_state
|
36 |
+
|
37 |
+
mask = attention_mask.unsqueeze(-1)
|
38 |
+
pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
|
39 |
+
logits = self.classification_head(pooled_output) # [batch_size, num_classes]
|
40 |
+
|
41 |
+
loss = None
|
42 |
+
if labels is not None:
|
43 |
+
labels = labels.to(torch.bfloat16)
|
44 |
+
loss = nn.CrossEntropyLoss()(logits, labels)
|
45 |
+
|
46 |
+
return {
|
47 |
+
"loss": loss,
|
48 |
+
"logits": logits
|
49 |
+
}
|
50 |
+
```
|
51 |
+
Then we load our pretrained model
|
52 |
+
```python
|
53 |
+
tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-Human", do_lower_case=False)
|
54 |
+
model = T5ClassificationModel.from_pretrained("jiaxie/DeepProtT5-Human", torch_dtype=torch.bfloat16).to("cuda")
|
55 |
+
```
|