jiaxie commited on
Commit
7ab0ce2
·
verified ·
1 Parent(s): 5304c6a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -3
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ First we define a class T5ClassificationModel:
5
+ ```python
6
+ from transformers import (
7
+ T5Config,
8
+ T5EncoderModel,
9
+ T5Tokenizer,
10
+ PreTrainedModel,
11
+ TrainingArguments,
12
+ Trainer,
13
+ DataCollatorWithPadding,
14
+ )
15
+ class T5ClassificationModel(PreTrainedModel):
16
+ config_class = T5Config
17
+
18
+ def __init__(self, config, d_model=None, num_classes=2):
19
+ super().__init__(config)
20
+ self.num_classes = num_classes
21
+
22
+ self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
23
+
24
+ hidden_dim = d_model if d_model is not None else config.d_model
25
+ self.classification_head = nn.Linear(hidden_dim, num_classes)
26
+
27
+ def forward(
28
+ self,
29
+ input_ids=None,
30
+ attention_mask=None,
31
+ labels=None,
32
+ **kwargs
33
+ ):
34
+ encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
35
+ hidden_states = encoder_outputs.last_hidden_state
36
+
37
+ mask = attention_mask.unsqueeze(-1)
38
+ pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
39
+ logits = self.classification_head(pooled_output) # [batch_size, num_classes]
40
+
41
+ loss = None
42
+ if labels is not None:
43
+ labels = labels.to(torch.bfloat16)
44
+ loss = nn.CrossEntropyLoss()(logits, labels)
45
+
46
+ return {
47
+ "loss": loss,
48
+ "logits": logits
49
+ }
50
+ ```
51
+ Then we load our pretrained model
52
+ ```python
53
+ tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-Human", do_lower_case=False)
54
+ model = T5ClassificationModel.from_pretrained("jiaxie/DeepProtT5-Human", torch_dtype=torch.bfloat16).to("cuda")
55
+ ```