jiaxie commited on
Commit
7044cef
·
verified ·
1 Parent(s): 733e96d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -1,3 +1,44 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ First we define a class T5PairRegressionModel:
6
+ ```python
7
+ from transformers import (
8
+ T5Config,
9
+ T5EncoderModel,
10
+ T5Tokenizer,
11
+ PreTrainedModel,
12
+ TrainingArguments,
13
+ Trainer,
14
+ DataCollatorWithPadding,
15
+ )
16
+ class T5PairRegressionModel(PreTrainedModel):
17
+ config_class = T5Config
18
+
19
+ def __init__(self, config, d_model=None):
20
+ super().__init__(config)
21
+ self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
22
+ hidden_dim = d_model if d_model is not None else config.d_model
23
+ self.regression_head = nn.Linear(hidden_dim, 1)
24
+
25
+ def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
26
+ encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
27
+ hidden_states = encoder_outputs.last_hidden_state
28
+
29
+ mask = attention_mask.unsqueeze(-1)
30
+ pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
31
+ logits = self.regression_head(pooled_output).squeeze(-1) # [batch_size]
32
+
33
+ loss = None
34
+ if labels is not None:
35
+ labels = labels.to(torch.bfloat16)
36
+ loss = nn.MSELoss()(logits, labels)
37
+
38
+ return {"loss": loss, "logits": logits}
39
+ ```
40
+ Then we load our pretrained model
41
+ ```python
42
+ tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-SAbDab-Chen", do_lower_case=False)
43
+ model = T5PairRegressionModel.from_pretrained("jiaxie/DeepProtT5-SAbDab-Chen", torch_dtype=torch.bfloat16).to("cuda")
44
+ ```