jiaxie commited on
Commit
e7b1211
·
verified ·
1 Parent(s): 2aeed35

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ First we define a class T5ClassificationModel:
6
+ ```python
7
+ from transformers import (
8
+ T5Config,
9
+ T5EncoderModel,
10
+ T5Tokenizer,
11
+ PreTrainedModel,
12
+ TrainingArguments,
13
+ Trainer,
14
+ DataCollatorWithPadding,
15
+ )
16
+ class T5ClassificationModel(PreTrainedModel):
17
+ config_class = T5Config
18
+
19
+ def __init__(self, config, d_model=None, num_classes=2):
20
+ super().__init__(config)
21
+ self.num_classes = num_classes
22
+
23
+ self.encoder = T5EncoderModel.from_pretrained("Rostlab/prot_t5_xl_uniref50")
24
+
25
+ hidden_dim = d_model if d_model is not None else config.d_model
26
+ self.classification_head = nn.Linear(hidden_dim, num_classes)
27
+
28
+ def forward(
29
+ self,
30
+ input_ids=None,
31
+ attention_mask=None,
32
+ labels=None,
33
+ **kwargs
34
+ ):
35
+ encoder_outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
36
+ hidden_states = encoder_outputs.last_hidden_state
37
+
38
+ mask = attention_mask.unsqueeze(-1)
39
+ pooled_output = (hidden_states * mask).sum(dim=1) / mask.sum(dim=1)
40
+ logits = self.classification_head(pooled_output) # [batch_size, num_classes]
41
+
42
+ loss = None
43
+ if labels is not None:
44
+ labels = labels.to(torch.bfloat16)
45
+ loss = nn.CrossEntropyLoss()(logits, labels)
46
+
47
+ return {
48
+ "loss": loss,
49
+ "logits": logits
50
+ }
51
+ ```
52
+ Then we load our pretrained model
53
+ ```python
54
+ tokenizer = T5Tokenizer.from_pretrained("jiaxie/DeepProtT5-Solubility", do_lower_case=False)
55
+ model = T5ClassificationModel.from_pretrained("jiaxie/DeepProtT5-Solubility", torch_dtype=torch.bfloat16).to("cuda")
56
+ ```