Update README.md
Browse files
README.md
CHANGED
@@ -139,8 +139,8 @@ passage_embeddings = embeddings[2:]
|
|
139 |
# Compute the (cosine) similarity between the query and document embeddings
|
140 |
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
141 |
print(scores)
|
142 |
-
# tensor([[0.
|
143 |
-
# [0.
|
144 |
```
|
145 |
</details>
|
146 |
|
@@ -180,8 +180,8 @@ document_embeddings = model.encode(documents, prompt_name="nl2code_document")
|
|
180 |
# Compute the (cosine) similarity between the query and document embeddings
|
181 |
similarity = model.similarity(query_embeddings, document_embeddings)
|
182 |
print(similarity)
|
183 |
-
# tensor([[0.
|
184 |
-
# [0.
|
185 |
```
|
186 |
</details>
|
187 |
|
@@ -260,8 +260,8 @@ passage_embeddings = embeddings[n_q:]
|
|
260 |
# Cosine similarity matrix (queries x documents)
|
261 |
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
262 |
print(scores)
|
263 |
-
# tensor([[0.
|
264 |
-
# [0.
|
265 |
```
|
266 |
|
267 |
</details>
|
|
|
139 |
# Compute the (cosine) similarity between the query and document embeddings
|
140 |
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
141 |
print(scores)
|
142 |
+
# tensor([[0.7647, 0.1115],
|
143 |
+
# [0.0930, 0.6606]], grad_fn=<MmBackward0>)
|
144 |
```
|
145 |
</details>
|
146 |
|
|
|
180 |
# Compute the (cosine) similarity between the query and document embeddings
|
181 |
similarity = model.similarity(query_embeddings, document_embeddings)
|
182 |
print(similarity)
|
183 |
+
# tensor([[0.7670, 0.1117],
|
184 |
+
# [0.0938, 0.6607]])
|
185 |
```
|
186 |
</details>
|
187 |
|
|
|
260 |
# Cosine similarity matrix (queries x documents)
|
261 |
scores = cosine_similarity(query_embeddings, passage_embeddings)
|
262 |
print(scores)
|
263 |
+
# tensor([[0.7650, 0.1118],
|
264 |
+
# [0.0937, 0.6613]])
|
265 |
```
|
266 |
|
267 |
</details>
|