File size: 24,361 Bytes
d1e5d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
import os
import math
import numpy as np
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
from typing_extensions import Unpack
import torch
from torch import nn
from torch.utils.data import DataLoader
from functools import partial
from PIL import Image
from tqdm import tqdm
from enum import Enum
from transformers import BatchEncoding, BatchFeature
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
from transformers.models.qwen2_5_vl import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
from transformers.processing_utils import (
AllKwargsForChatTemplate,
ImageInput,
PreTokenizedInput,
TextInput,
VideoInput,
)
from huggingface_hub import snapshot_download
from .configuration_colqwen_duo import ColQwen25DuoConfig
def get_torch_device(device: str = "auto") -> str:
"""
Returns the device (string) to be used by PyTorch.
`device` arg defaults to "auto" which will use:
- "cuda:0" if available
- else "mps" if available
- else "cpu".
"""
if device == "auto":
if torch.cuda.is_available():
device = "cuda:0"
elif torch.backends.mps.is_available(): # for Apple Silicon
device = "mps"
else:
device = "cpu"
logger.info(f"Using device: {device}")
return device
class PromptType(str, Enum):
query = "query"
passage = "passage"
class BaseVisualRetrieverProcessor(ABC):
"""
Base class for visual retriever processors.
"""
@abstractmethod
def process_images(
self,
images: List[Image.Image],
) -> Union[BatchFeature, BatchEncoding]:
pass
@abstractmethod
def process_texts(
self,
texts: List[str],
max_length: int = 50,
suffix: Optional[str] = None,
prefix: Optional[str] = None,
) -> Union[BatchFeature, BatchEncoding]:
pass
@abstractmethod
def score(
self,
qs: List[torch.Tensor],
ps: List[torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
**kwargs,
) -> torch.Tensor:
pass
@staticmethod
def score_single_vector(
qs: List[torch.Tensor],
ps: List[torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
) -> torch.Tensor:
"""
Compute the dot product score for the given single-vector query and passage embeddings.
"""
device = device or get_torch_device("auto")
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")
qs_stacked = torch.stack(qs).to(device)
ps_stacked = torch.stack(ps).to(device)
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
scores = scores.to(torch.float32)
return scores
@staticmethod
def score_multi_vector(
qs: List[torch.Tensor],
ps: List[torch.Tensor],
batch_size: int = 128,
device: Optional[Union[str, torch.device]] = None,
) -> torch.Tensor:
"""
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
"""
device = device or get_torch_device("auto")
if len(qs) == 0:
raise ValueError("No queries provided")
if len(ps) == 0:
raise ValueError("No passages provided")
scores_list: List[torch.Tensor] = []
for i in range(0, len(qs), batch_size):
scores_batch = []
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to(
device
)
for j in range(0, len(ps), batch_size):
ps_batch = torch.nn.utils.rnn.pad_sequence(
ps[j : j + batch_size], batch_first=True, padding_value=0
).to(device)
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
scores_batch = torch.cat(scores_batch, dim=1).cpu()
scores_list.append(scores_batch)
scores = torch.cat(scores_list, dim=0)
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"
scores = scores.to(torch.float32)
return scores
class QwenVLProcessor(ABC):
def __call__(
self,
images: Optional[ImageInput] = None,
text: Optional[Union[TextInput, PreTokenizedInput, List[PreTokenizedInput]]] = None,
videos: Optional[VideoInput] = None,
**kwargs,
) -> BatchFeature:
return super().__call__(images=images, text=text, videos=videos, **kwargs) # type: ignore
def apply_chat_template(
self,
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
chat_template: Optional[str] = None,
**kwargs: Unpack[AllKwargsForChatTemplate],
) -> str:
return super().apply_chat_template(conversation=conversation, chat_template=chat_template, **kwargs) # type: ignore
class QwenVLEmbeddingProcessorBase(BaseVisualRetrieverProcessor, QwenVLProcessor):
assistant_prefix_len: int = 58 # length of prefix created by
# super().apply_chat_template(conversation=conversation, chat_template=chat_template, **kwargs)
@staticmethod
def round_by_factor(number: float, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
@staticmethod
def ceil_by_factor(number: float, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
@staticmethod
def floor_by_factor(number: float, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def process_images(
self,
images: Union[List[Image.Image], List[List[Image.Image]]],
) -> BatchFeature:
if isinstance(images[0], list):
images = cast(List[List[Image.Image]], images)
text_doc = []
for i in range(len(images)):
conversation = [{"role": "user", "content": [{"type": "image"}] * len(images[i])}]
template = self.apply_chat_template(conversation, add_generation_prompt=False)
text_doc.append(template[self.assistant_prefix_len :])
else:
images = cast(List[Image.Image], images)
text_doc = [
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
] * len(images)
# The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore
# Separate pixel_values for each image
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
# Pad pixel_values to the same length to be able to make it into a tensor
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
max_length = max([len(pv) for pv in pixel_values])
pixel_values = [
torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)])
for pv in pixel_values
]
batch_doc["pixel_values"] = torch.stack(pixel_values)
return batch_doc
def process_texts(
self,
texts: List[str],
max_length: int = 8192,
suffix: Optional[str] = None,
prefix: Optional[str] = None,
padding: Optional[str] = None,
) -> BatchFeature:
if suffix is None:
suffix = "<pad>" * 10
padded_texts: List[str] = []
for text in texts:
if prefix:
text = f"{prefix}: {text}"
text += suffix
padded_texts.append(text)
text_batch = self(
text=padded_texts,
return_tensors="pt",
padding=padding or "longest",
max_length=max_length,
truncation=True,
)
return text_batch
class ColQwenDuoProcessorBase(QwenVLEmbeddingProcessorBase):
"""
Processor for ColQwenDuo. Mirrors the `ColQwen2Processor` class.
"""
def score(
self,
qs: List[torch.Tensor],
ps: List[torch.Tensor],
vector_type: str,
device: Optional[Union[str, torch.device]] = None,
truncate: Optional[int] = None,
**kwargs,
) -> torch.Tensor:
"""
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
"""
if truncate:
qs = [q[..., :truncate] for q in qs]
ps = [p[..., :truncate] for p in ps]
if vector_type == "single_vector":
return self.score_single_vector(qs, ps, device=device)
elif vector_type == "multi_vector":
return self.score_multi_vector(qs, ps, device=device, **kwargs)
else:
raise ValueError('vector_type must be one of the following: [`single_vector`, `multi_vector`]')
class ColQwen25DuoProcessor(ColQwenDuoProcessorBase, Qwen2_5_VLProcessor):
def __init__(self, *args, **kwargs) -> None:
Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
@dataclass
class HybridModelOutput:
"""
Base class for the Hybrid Model outputs.
Args:
vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
"""
vlm_last_hidden_states: Optional[torch.Tensor] = None
single_vec_emb: Optional[torch.Tensor] = None
multi_vec_emb: Optional[torch.Tensor] = None
class EncodeMixin:
"""
Interface to encode data for MTEB and ViDoRe evaluations.
"""
def _process_batches(
self,
data: List[Union[str, Image.Image]],
processor_fn: Callable,
desc: str,
vector_type: Optional[str] = None,
return_numpy: bool = False,
**kwargs,
) -> Union[np.ndarray, List[torch.Tensor]]:
dataloader = DataLoader(
dataset=data,
batch_size=kwargs.get("batch_size", 32),
shuffle=False,
collate_fn=processor_fn,
)
results = []
self.eval()
for batch in tqdm(dataloader, desc=desc):
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.autocast(device_type=torch.device(self.device).type):
embeddings = self(**batch)
if isinstance(embeddings, HybridModelOutput) and (vector_type == "single_vector"):
embeddings = embeddings.single_vec_emb
elif isinstance(embeddings, HybridModelOutput) and (vector_type == "multi_vector"):
embeddings = embeddings.multi_vec_emb
elif not vector_type and isinstance(embeddings, HybridModelOutput):
embeddings = embeddings.single_vec_emb # get single-vectors for text2text tasks by default
results.append(embeddings.cpu() if return_numpy else list(torch.unbind(embeddings)))
if return_numpy:
return np.concatenate([result.numpy() for result in results], axis=0)
return [item for sublist in results for item in sublist]
def encode(
self,
sentences: List[str],
max_length: int = 8192,
batch_size: int = 8,
prefixes: Optional[List[str]] = None,
desc: Optional[str] = None,
vector_type: Optional[str] = None,
padding: Optional[str] = None,
prompt_type: Optional[PromptType] = None,
**kwargs,
) -> np.ndarray:
prefix = None
if isinstance(prefixes, list) and len(prefixes) > 0:
if prompt_type:
desc = f"MTEB: Encode {prompt_type.value}..."
prefix = prefixes[0] if prompt_type.value == "query" else prefixes[1]
else:
prefix = prefixes[0]
processor_fn = partial(self.processor.process_texts, max_length=max_length, prefix=prefix, padding=padding)
desc = desc or "MTEB: Encode texts..."
return self._process_batches(
data=sentences,
processor_fn=processor_fn,
desc=desc,
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
def encode_texts(
self,
queries: List[str],
max_length: int = 8192,
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
processor_fn = partial(self.processor.process_texts, max_length=max_length, prefix="Query")
return self._process_batches(
data=queries,
processor_fn=processor_fn,
desc=desc or "Encode queries...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
def encode_images(
self,
documents: List[Image.Image],
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
return self._process_batches(
data=documents,
processor_fn=self.processor.process_images,
desc=desc or "Encode documents...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
class QwenVLModel(ABC):
def get_rope_index(
self,
input_ids: torch.LongTensor,
image_grid_thw: Union[torch.LongTensor, None],
attention_mask: torch.Tensor,
) -> tuple[torch.LongTensor, torch.Tensor]:
return super().get_rope_index( # type: ignore
input_ids=input_ids,
image_grid_thw=image_grid_thw,
attention_mask=attention_mask,
)
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
position_ids: torch.LongTensor,
rope_deltas: torch.Tensor,
output_hidden_states: bool,
use_cache: bool,
**kwargs,
) -> Qwen2VLCausalLMOutputWithPast:
return super().forward( # type: ignore
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
rope_deltas=rope_deltas,
output_hidden_states=output_hidden_states,
use_cache=use_cache,
**kwargs,
)
class QwenVLEmbeddingBase(EncodeMixin, QwenVLModel):
main_input_name: ClassVar[str] = "doc_input_ids"
def get_vlm_last_hidden_states(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
**kwargs,
) -> torch.Tensor:
if "pixel_values" in kwargs:
offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
kwargs["pixel_values"] = torch.cat([pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0)
position_ids, rope_deltas = self.get_rope_index(
input_ids=input_ids,
image_grid_thw=kwargs.get("image_grid_thw", None),
attention_mask=attention_mask,
)
outputs = super().forward(
input_ids,
attention_mask,
**kwargs,
position_ids=position_ids,
rope_deltas=rope_deltas,
output_hidden_states=True,
use_cache=False,
)
hidden_states = outputs.hidden_states
if not hidden_states:
raise ValueError("Hidden states not found in model output")
return hidden_states[-1]
class AbstractHybridModel(ABC):
"""
Abstract class for a hybrid model (single-vector and multi-vector embeddings).
"""
@property
def single_vector_projector_dim(self) -> int:
return self.config.single_vector_projector_dim
@property
def multi_vector_projector_dim(self) -> int:
return self.config.multi_vector_projector_dim
@abstractmethod
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
*args,
**kwargs,
) -> HybridModelOutput:
"""
Forward pass through the model. Returns both single-vector and multi-vector embeddings.
Must be implemented by subclasses.
"""
pass
def _init_projection_layers(self, config) -> None:
"""
Initializes projection layers.
"""
self.config.single_vector_projector_dim = config.single_vector_projector_dim
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
self.single_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.single_vector_projector_dim,
)
self.multi_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.multi_vector_projector_dim,
)
@staticmethod
def _delete_redundant_forward_kwargs(kwargs: Dict[str, Any]) -> None:
"""
Delete redundant kwargs before passing them to the forward method. In-place operation.
"""
for key in ["input_ids", "attention_mask", "output_hidden_states"]:
kwargs.pop(key, None)
def project_to_single_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
input_ids: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
"""
Project the hidden states to single-vector embeddings.
"""
pooling_method = self.config.single_vector_pool_strategy
if pooling_method == "mean" and input_ids is None:
print("Warning: `input_ids` is None. Using `legacy-mean` pooling strategy instead.")
pooling_method = "legacy-mean"
if pooling_method == "last-token":
pooled_output = hidden_states[:, -1, :]
elif pooling_method == "mean":
if self._input_has_image(input_ids[0]): # got document image(s)
# getting start and end positions of image tokens; torch.where returns
# (1) a list of indices of input sequences
# (shape corresponds to the total number of images in the batch)
# (2) a list of positions of image tokens in the input sequence
# (shape corresponds to the total number of images in the batch)
input_seq_idx, img_start_pos = torch.where(
input_ids == self.config.vision_start_token_id
) # (total number of images), (total number of images)
_, img_end_pos = torch.where(
input_ids == self.config.vision_end_token_id
) # (total number of images), (total number of images)
means = []
for i in range(input_seq_idx.shape[0]):
vector_pos = input_seq_idx[i]
start = img_start_pos[i]
end = img_end_pos[i]
mean_value = hidden_states[vector_pos][start : end + 1].mean(dim=0)
means.append(mean_value)
pooled_output = torch.stack(means)
else: # got query text
pooled_output = torch.sum(hidden_states * attention_mask.unsqueeze(-1), dim=1) / torch.sum(
attention_mask, dim=1, keepdim=True
)
elif pooling_method == "legacy-mean":
pooled_output = torch.sum(hidden_states * attention_mask.unsqueeze(-1), dim=1) / torch.sum(
attention_mask, dim=1, keepdim=True
)
else:
raise ValueError(f"Invalid pooling strategy: {pooling_method}")
single_vec_emb = self.single_vector_projector(pooled_output)
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
def project_to_multi_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
"""
Project the hidden states to multi-vector embeddings.
"""
multi_vec_emb = self.multi_vector_projector(hidden_states)
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
return multi_vec_emb * attention_mask.unsqueeze(-1)
def _input_has_image(self, input_ids):
return self.config.vision_start_token_id in input_ids
class ColQwenDuoBase(AbstractHybridModel, QwenVLEmbeddingBase):
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
**kwargs,
) -> HybridModelOutput:
"""
Forward pass through ColQwenDuo. Returns both single-vector and multi-vector embeddings.
Args:
input_ids (torch.LongTensor): The input tokens tensor.
attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
HybridModelOutput:
single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim).
multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim).
"""
# Delete redundant kwargs
self._delete_redundant_forward_kwargs(kwargs)
# Forward pass through the VLM
hidden_states = self.get_vlm_last_hidden_states(
input_ids=input_ids, attention_mask=attention_mask, **kwargs
) # (batch_size, seq_length, hidden_size)
# Compute the embeddings
single_vec_emb = self.project_to_single_vector_embeddings(hidden_states, attention_mask, input_ids=input_ids)
multi_vec_emb = self.project_to_multi_vector_embeddings(hidden_states, attention_mask)
return HybridModelOutput(
vlm_last_hidden_states=hidden_states if output_vlm_last_hidden_states else None,
single_vec_emb=single_vec_emb,
multi_vec_emb=multi_vec_emb,
)
class ColQwen25Duo(ColQwenDuoBase, Qwen2_5_VLForConditionalGeneration):
config_class = ColQwen25DuoConfig
def __init__(self, config: ColQwen25DuoConfig):
Qwen2_5_VLForConditionalGeneration.__init__(self, config)
self._init_projection_layers(config)
self.post_init()
self.processor = ColQwen25DuoProcessor.from_pretrained(self.name_or_path, trust_remote_code=True)
@classmethod
def from_pretrained(
cls,
*args,
**kwargs,
):
if not "torch_dtype" in kwargs:
kwargs["torch_dtype"] = "auto"
model = super().from_pretrained(*args, **kwargs)
if model.config.pretrained_peft_model_name_or_path:
if os.path.isdir(model.name_or_path):
model.load_adapter(f'{model.name_or_path}/{model.config.pretrained_peft_model_name_or_path}')
else:
adapter_cache_path = snapshot_download(
repo_id=model.name_or_path,
allow_patterns=[os.path.join(model.config.pretrained_peft_model_name_or_path, '*')] # Only download files in adapter/
)
adapter_path = os.path.join(adapter_cache_path, model.config.pretrained_peft_model_name_or_path)
model.load_adapter(adapter_path)
return model
|