File size: 15,402 Bytes
998398d
e9be62d
998398d
e9be62d
 
998398d
e9be62d
 
998398d
e9be62d
 
 
 
998398d
 
 
 
e9be62d
 
 
998398d
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
998398d
 
 
 
 
 
 
e9be62d
 
 
998398d
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
998398d
 
 
 
 
 
 
e9be62d
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
 
 
 
 
 
998398d
 
e9be62d
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
998398d
 
e9be62d
 
 
998398d
 
 
e9be62d
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
 
 
 
 
 
998398d
 
e9be62d
998398d
e9be62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import math
import os
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast

import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import PeftModel
from peft.utils.hotswap import hotswap_adapter
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import BatchFeature
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_5_vl import (Qwen2_5_VLForConditionalGeneration,
                                            Qwen2_5_VLProcessor)

from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config


class PromptType(str, Enum):
    query = "query"
    passage = "passage"


class TaskType(str, Enum):
    retrieval = "retrieval"
    code = "code"
    text_matching = "text-matching"


class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor):
    def __init__(self, *args, **kwargs) -> None:
        Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
        self.assistant_prefix_len = 58
        self.text_max_length = 8192

    @staticmethod
    def round_by_factor(number: float, factor: int) -> int:
        """Returns the closest integer to 'number' that is divisible by 'factor'."""
        return round(number / factor) * factor

    @staticmethod
    def ceil_by_factor(number: float, factor: int) -> int:
        """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
        return math.ceil(number / factor) * factor

    @staticmethod
    def floor_by_factor(number: float, factor: int) -> int:
        """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
        return math.floor(number / factor) * factor

    def process_images(
        self,
        images: Union[List[Image.Image], List[List[Image.Image]]],
    ) -> BatchFeature:

        if isinstance(images[0], list):
            images = cast(List[List[Image.Image]], images)
            text_doc = []
            for i in range(len(images)):
                conversation = [
                    {"role": "user", "content": [{"type": "image"}] * len(images[i])}
                ]
                template = self.apply_chat_template(
                    conversation, add_generation_prompt=False
                )
                text_doc.append(template[self.assistant_prefix_len :])

        else:
            images = cast(List[Image.Image], images)
            text_doc = [
                "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
            ] * len(images)

        # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
        batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt")  # type: ignore
        # Separate pixel_values for each image
        offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
        # Pad pixel_values to the same length to be able to make it into a tensor
        pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())

        max_length = max([len(pv) for pv in pixel_values])

        pixel_values = [
            torch.cat(
                [
                    pv,
                    torch.zeros(
                        (max_length - len(pv), pv.shape[1]),
                        dtype=pv.dtype,
                        device=pv.device,
                    ),
                ]
            )
            for pv in pixel_values
        ]

        batch_doc["pixel_values"] = torch.stack(pixel_values)
        return batch_doc

    def process_texts(
        self,
        texts: List[str],
        max_length: Optional[int] = None,
        prefix: Optional[str] = None,
        padding: Optional[str] = None,
    ) -> BatchFeature:

        max_length = (
            self.text_max_length
            if max_length is None
            else min(max_length, self.text_max_length)
        )
        padded_texts: List[str] = []

        for text in texts:
            if prefix:
                text = f"{prefix}: {text}"
            padded_texts.append(text)

        text_batch = self(
            text=padded_texts,
            return_tensors="pt",
            padding=padding or "longest",
            max_length=max_length,
            truncation=True,
        )

        return text_batch


@dataclass
class JinaEmbeddingsV4ModelOutput:
    """
    Base class for the Hybrid Model outputs.
    Args:
        vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
        single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
        multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
    """

    vlm_last_hidden_states: Optional[torch.Tensor] = None
    single_vec_emb: Optional[torch.Tensor] = None
    multi_vec_emb: Optional[torch.Tensor] = None


class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
    config_class = JinaEmbeddingsV4Config
    main_input_name: ClassVar[str] = "doc_input_ids"

    def __init__(self, config: JinaEmbeddingsV4Config):
        Qwen2_5_VLForConditionalGeneration.__init__(self, config)
        self._init_projection_layers(config)
        self.post_init()
        self.processor = JinaEmbeddingsV4Processor.from_pretrained(
            self.name_or_path, trust_remote_code=True
        )
        self.single_vector_projector_dim = config.single_vector_projector_dim
        self.multi_vector_projector_dim = config.multi_vector_projector_dim

    def get_last_hidden_states(
        self,
        input_ids: torch.LongTensor,
        attention_mask: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        if "pixel_values" in kwargs:
            offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
            kwargs["pixel_values"] = torch.cat(
                [pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
            )

        position_ids, rope_deltas = super().get_rope_index(  # type: ignore
            input_ids=input_ids,
            image_grid_thw=kwargs.get("image_grid_thw", None),
            attention_mask=attention_mask,
        )

        kwargs["output_hidden_states"] = True

        outputs = super().forward(
            input_ids,
            attention_mask,
            **kwargs,
            position_ids=position_ids,
            rope_deltas=rope_deltas,
            use_cache=False,
        )

        hidden_states = outputs.hidden_states
        if not hidden_states:
            raise ValueError("Hidden states not found in model output")

        return hidden_states[-1]

    def _init_projection_layers(self, config) -> None:
        """
        Initializes projection layers.
        """
        self.config.single_vector_projector_dim = config.single_vector_projector_dim
        self.config.multi_vector_projector_dim = config.multi_vector_projector_dim

        self.single_vector_projector = nn.Linear(
            in_features=self.config.hidden_size,
            out_features=self.config.single_vector_projector_dim,
        )

        self.multi_vector_projector = nn.Linear(
            in_features=self.config.hidden_size,
            out_features=self.config.multi_vector_projector_dim,
        )

    def project_to_single_vector_embeddings(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        input_ids: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        """
        Project the hidden states to single-vector embeddings.
        """
        if self._input_has_image(input_ids[0]):  # got document image
            img_start_pos = torch.where(
                input_ids[0] == self.config.vision_start_token_id
            )[0][0]
            img_end_pos = torch.where(input_ids[0] == self.config.vision_end_token_id)[
                0
            ][0]
            pooled_output = (
                hidden_states[0][img_start_pos : img_end_pos + 1]
                .mean(dim=0)
                .unsqueeze(0)
            )

        else:  # got query text
            pooled_output = torch.sum(
                hidden_states * attention_mask.unsqueeze(-1), dim=1
            ) / torch.sum(attention_mask, dim=1, keepdim=True)
        single_vec_emb = self.single_vector_projector(pooled_output)
        return torch.nn.functional.normalize(single_vec_emb, dim=-1)

    def project_to_multi_vector_embeddings(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
    ) -> torch.Tensor:
        """
        Project the hidden states to multi-vector embeddings.
        """
        multi_vec_emb = self.multi_vector_projector(hidden_states)
        multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
        return multi_vec_emb * attention_mask.unsqueeze(-1)

    def _input_has_image(self, input_ids):
        return self.config.vision_start_token_id in input_ids

    def forward(
        self,
        input_ids: torch.LongTensor,
        attention_mask: torch.Tensor,
        output_vlm_last_hidden_states: bool = False,
        **kwargs,
    ) -> JinaEmbeddingsV4ModelOutput:
        """
        Forward pass through QwenVL25Embeddings. Returns both single-vector and multi-vector embeddings.
        Args:
            input_ids (torch.LongTensor): The input tokens tensor.
            attention_mask (torch.LongTensor): The attention mask tensor.
        Returns:
            JinaEmbeddingsV4ModelOutput:
                single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim).
                multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim).
        """
        # Forward pass through the VLM
        hidden_states = self.get_last_hidden_states(
            input_ids=input_ids, attention_mask=attention_mask, **kwargs
        )  # (batch_size, seq_length, hidden_size)

        # Compute the embeddings
        single_vec_emb = self.project_to_single_vector_embeddings(
            hidden_states, attention_mask, input_ids=input_ids
        )
        multi_vec_emb = self.project_to_multi_vector_embeddings(
            hidden_states, attention_mask
        )

        return JinaEmbeddingsV4ModelOutput(
            vlm_last_hidden_states=(
                hidden_states if output_vlm_last_hidden_states else None
            ),
            single_vec_emb=single_vec_emb,
            multi_vec_emb=multi_vec_emb,
        )

    def _process_batches(
        self,
        data: List[Union[str, Image.Image]],
        processor_fn: Callable,
        desc: str,
        vector_type: Optional[str] = None,
        return_numpy: bool = False,
        **kwargs,
    ) -> Union[np.ndarray, List[torch.Tensor]]:
        dataloader = DataLoader(
            dataset=data,
            batch_size=kwargs.get("batch_size", 32),
            shuffle=False,
            collate_fn=processor_fn,
        )
        vector_type = vector_type or "single_vector"
        results = []
        self.eval()
        for batch in tqdm(dataloader, desc=desc):
            with torch.no_grad():
                batch = {k: v.to(self.device) for k, v in batch.items()}
                with torch.autocast(device_type=torch.device(self.device).type):
                    embeddings = self(**batch)
                    if vector_type == "single_vector":
                        embeddings = embeddings.single_vec_emb
                    else:
                        embeddings = embeddings.multi_vec_emb
                    results.append(
                        embeddings.cpu()
                        if return_numpy
                        else list(torch.unbind(embeddings))
                    )
        if return_numpy:
            return np.concatenate([result.numpy() for result in results], axis=0)
        return [item for sublist in results for item in sublist]

    def encode_texts(
        self,
        queries: List[str],
        max_length: int = 8192,
        batch_size: int = 8,
        vector_type: Optional[str] = None,
        desc: Optional[str] = None,
        **kwargs,
    ) -> List[torch.Tensor]:
        processor_fn = partial(
            self.processor.process_texts, max_length=max_length, prefix="Query"
        )
        return self._process_batches(
            data=queries,
            processor_fn=processor_fn,
            desc=desc or "Encode queries...",
            vector_type=vector_type,
            batch_size=batch_size,
            **kwargs,
        )

    def encode_images(
        self,
        documents: List[Image.Image],
        batch_size: int = 8,
        vector_type: Optional[str] = None,
        desc: Optional[str] = None,
        **kwargs,
    ) -> List[torch.Tensor]:
        return self._process_batches(
            data=documents,
            processor_fn=self.processor.process_images,
            desc=desc or "Encode documents...",
            vector_type=vector_type,
            batch_size=batch_size,
            **kwargs,
        )

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path,
        *args,
        **kwargs,
    ):
        if "torch_dtype" not in kwargs:
            kwargs["torch_dtype"] = "auto"

        task = kwargs.pop("task", TaskType.retrieval)

        # Get the base model first
        base_model = super().from_pretrained(
            pretrained_model_name_or_path, *args, **kwargs
        )

        # Configure adapter directory
        if os.path.isdir(base_model.name_or_path):
            adapter_dir = os.path.join(base_model.name_or_path, "adapters")
        else:
            adapter_cache_path = snapshot_download(
                repo_id=base_model.name_or_path, allow_patterns=["adapters/*"]
            )
            adapter_dir = os.path.join(adapter_cache_path, "adapters")

        # Store adapter directory for later use with set_task
        base_model.adapter_dir = adapter_dir

        # Create the PEFT model with the requested task adapter
        peft_model = PeftModel.from_pretrained(
            base_model, os.path.join(adapter_dir, task)
        )

        # Add set_task method to the PEFT model instance
        def set_task_method(self, task_name: Union[str, TaskType]):
            """
            Set the task adapter for the model.

            Args:
                task_name (Union[str, TaskType]): The task name. Must be one of TaskType values or
                                                  one of ['retrieval', 'text-matching', 'code']
            """
            if isinstance(task_name, str):
                try:
                    task_name = TaskType(task_name)
                except ValueError:
                    valid_tasks = [t.value for t in TaskType]
                    raise ValueError(
                        f"Invalid task: {task_name}. Must be one of {valid_tasks}"
                    )

            adapter_path = os.path.join(self.adapter_dir, task_name.value)
            hotswap_adapter(self, adapter_path, adapter_name="default")

        # Bind the method to the instance
        peft_model.set_task = set_task_method.__get__(peft_model, type(peft_model))

        return peft_model