File size: 15,402 Bytes
998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d 998398d e9be62d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import math
import os
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
import numpy as np
import torch
from huggingface_hub import snapshot_download
from peft import PeftModel
from peft.utils.hotswap import hotswap_adapter
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import BatchFeature
from transformers.modeling_utils import PreTrainedModel
from transformers.models.qwen2_5_vl import (Qwen2_5_VLForConditionalGeneration,
Qwen2_5_VLProcessor)
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
class PromptType(str, Enum):
query = "query"
passage = "passage"
class TaskType(str, Enum):
retrieval = "retrieval"
code = "code"
text_matching = "text-matching"
class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor):
def __init__(self, *args, **kwargs) -> None:
Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
self.assistant_prefix_len = 58
self.text_max_length = 8192
@staticmethod
def round_by_factor(number: float, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
@staticmethod
def ceil_by_factor(number: float, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
@staticmethod
def floor_by_factor(number: float, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def process_images(
self,
images: Union[List[Image.Image], List[List[Image.Image]]],
) -> BatchFeature:
if isinstance(images[0], list):
images = cast(List[List[Image.Image]], images)
text_doc = []
for i in range(len(images)):
conversation = [
{"role": "user", "content": [{"type": "image"}] * len(images[i])}
]
template = self.apply_chat_template(
conversation, add_generation_prompt=False
)
text_doc.append(template[self.assistant_prefix_len :])
else:
images = cast(List[Image.Image], images)
text_doc = [
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
] * len(images)
# The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore
# Separate pixel_values for each image
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
# Pad pixel_values to the same length to be able to make it into a tensor
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
max_length = max([len(pv) for pv in pixel_values])
pixel_values = [
torch.cat(
[
pv,
torch.zeros(
(max_length - len(pv), pv.shape[1]),
dtype=pv.dtype,
device=pv.device,
),
]
)
for pv in pixel_values
]
batch_doc["pixel_values"] = torch.stack(pixel_values)
return batch_doc
def process_texts(
self,
texts: List[str],
max_length: Optional[int] = None,
prefix: Optional[str] = None,
padding: Optional[str] = None,
) -> BatchFeature:
max_length = (
self.text_max_length
if max_length is None
else min(max_length, self.text_max_length)
)
padded_texts: List[str] = []
for text in texts:
if prefix:
text = f"{prefix}: {text}"
padded_texts.append(text)
text_batch = self(
text=padded_texts,
return_tensors="pt",
padding=padding or "longest",
max_length=max_length,
truncation=True,
)
return text_batch
@dataclass
class JinaEmbeddingsV4ModelOutput:
"""
Base class for the Hybrid Model outputs.
Args:
vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
"""
vlm_last_hidden_states: Optional[torch.Tensor] = None
single_vec_emb: Optional[torch.Tensor] = None
multi_vec_emb: Optional[torch.Tensor] = None
class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
config_class = JinaEmbeddingsV4Config
main_input_name: ClassVar[str] = "doc_input_ids"
def __init__(self, config: JinaEmbeddingsV4Config):
Qwen2_5_VLForConditionalGeneration.__init__(self, config)
self._init_projection_layers(config)
self.post_init()
self.processor = JinaEmbeddingsV4Processor.from_pretrained(
self.name_or_path, trust_remote_code=True
)
self.single_vector_projector_dim = config.single_vector_projector_dim
self.multi_vector_projector_dim = config.multi_vector_projector_dim
def get_last_hidden_states(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
**kwargs,
) -> torch.Tensor:
if "pixel_values" in kwargs:
offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
kwargs["pixel_values"] = torch.cat(
[pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
)
position_ids, rope_deltas = super().get_rope_index( # type: ignore
input_ids=input_ids,
image_grid_thw=kwargs.get("image_grid_thw", None),
attention_mask=attention_mask,
)
kwargs["output_hidden_states"] = True
outputs = super().forward(
input_ids,
attention_mask,
**kwargs,
position_ids=position_ids,
rope_deltas=rope_deltas,
use_cache=False,
)
hidden_states = outputs.hidden_states
if not hidden_states:
raise ValueError("Hidden states not found in model output")
return hidden_states[-1]
def _init_projection_layers(self, config) -> None:
"""
Initializes projection layers.
"""
self.config.single_vector_projector_dim = config.single_vector_projector_dim
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
self.single_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.single_vector_projector_dim,
)
self.multi_vector_projector = nn.Linear(
in_features=self.config.hidden_size,
out_features=self.config.multi_vector_projector_dim,
)
def project_to_single_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
input_ids: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
"""
Project the hidden states to single-vector embeddings.
"""
if self._input_has_image(input_ids[0]): # got document image
img_start_pos = torch.where(
input_ids[0] == self.config.vision_start_token_id
)[0][0]
img_end_pos = torch.where(input_ids[0] == self.config.vision_end_token_id)[
0
][0]
pooled_output = (
hidden_states[0][img_start_pos : img_end_pos + 1]
.mean(dim=0)
.unsqueeze(0)
)
else: # got query text
pooled_output = torch.sum(
hidden_states * attention_mask.unsqueeze(-1), dim=1
) / torch.sum(attention_mask, dim=1, keepdim=True)
single_vec_emb = self.single_vector_projector(pooled_output)
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
def project_to_multi_vector_embeddings(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
"""
Project the hidden states to multi-vector embeddings.
"""
multi_vec_emb = self.multi_vector_projector(hidden_states)
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
return multi_vec_emb * attention_mask.unsqueeze(-1)
def _input_has_image(self, input_ids):
return self.config.vision_start_token_id in input_ids
def forward(
self,
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
**kwargs,
) -> JinaEmbeddingsV4ModelOutput:
"""
Forward pass through QwenVL25Embeddings. Returns both single-vector and multi-vector embeddings.
Args:
input_ids (torch.LongTensor): The input tokens tensor.
attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
JinaEmbeddingsV4ModelOutput:
single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim).
multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim).
"""
# Forward pass through the VLM
hidden_states = self.get_last_hidden_states(
input_ids=input_ids, attention_mask=attention_mask, **kwargs
) # (batch_size, seq_length, hidden_size)
# Compute the embeddings
single_vec_emb = self.project_to_single_vector_embeddings(
hidden_states, attention_mask, input_ids=input_ids
)
multi_vec_emb = self.project_to_multi_vector_embeddings(
hidden_states, attention_mask
)
return JinaEmbeddingsV4ModelOutput(
vlm_last_hidden_states=(
hidden_states if output_vlm_last_hidden_states else None
),
single_vec_emb=single_vec_emb,
multi_vec_emb=multi_vec_emb,
)
def _process_batches(
self,
data: List[Union[str, Image.Image]],
processor_fn: Callable,
desc: str,
vector_type: Optional[str] = None,
return_numpy: bool = False,
**kwargs,
) -> Union[np.ndarray, List[torch.Tensor]]:
dataloader = DataLoader(
dataset=data,
batch_size=kwargs.get("batch_size", 32),
shuffle=False,
collate_fn=processor_fn,
)
vector_type = vector_type or "single_vector"
results = []
self.eval()
for batch in tqdm(dataloader, desc=desc):
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.autocast(device_type=torch.device(self.device).type):
embeddings = self(**batch)
if vector_type == "single_vector":
embeddings = embeddings.single_vec_emb
else:
embeddings = embeddings.multi_vec_emb
results.append(
embeddings.cpu()
if return_numpy
else list(torch.unbind(embeddings))
)
if return_numpy:
return np.concatenate([result.numpy() for result in results], axis=0)
return [item for sublist in results for item in sublist]
def encode_texts(
self,
queries: List[str],
max_length: int = 8192,
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
processor_fn = partial(
self.processor.process_texts, max_length=max_length, prefix="Query"
)
return self._process_batches(
data=queries,
processor_fn=processor_fn,
desc=desc or "Encode queries...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
def encode_images(
self,
documents: List[Image.Image],
batch_size: int = 8,
vector_type: Optional[str] = None,
desc: Optional[str] = None,
**kwargs,
) -> List[torch.Tensor]:
return self._process_batches(
data=documents,
processor_fn=self.processor.process_images,
desc=desc or "Encode documents...",
vector_type=vector_type,
batch_size=batch_size,
**kwargs,
)
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
*args,
**kwargs,
):
if "torch_dtype" not in kwargs:
kwargs["torch_dtype"] = "auto"
task = kwargs.pop("task", TaskType.retrieval)
# Get the base model first
base_model = super().from_pretrained(
pretrained_model_name_or_path, *args, **kwargs
)
# Configure adapter directory
if os.path.isdir(base_model.name_or_path):
adapter_dir = os.path.join(base_model.name_or_path, "adapters")
else:
adapter_cache_path = snapshot_download(
repo_id=base_model.name_or_path, allow_patterns=["adapters/*"]
)
adapter_dir = os.path.join(adapter_cache_path, "adapters")
# Store adapter directory for later use with set_task
base_model.adapter_dir = adapter_dir
# Create the PEFT model with the requested task adapter
peft_model = PeftModel.from_pretrained(
base_model, os.path.join(adapter_dir, task)
)
# Add set_task method to the PEFT model instance
def set_task_method(self, task_name: Union[str, TaskType]):
"""
Set the task adapter for the model.
Args:
task_name (Union[str, TaskType]): The task name. Must be one of TaskType values or
one of ['retrieval', 'text-matching', 'code']
"""
if isinstance(task_name, str):
try:
task_name = TaskType(task_name)
except ValueError:
valid_tasks = [t.value for t in TaskType]
raise ValueError(
f"Invalid task: {task_name}. Must be one of {valid_tasks}"
)
adapter_path = os.path.join(self.adapter_dir, task_name.value)
hotswap_adapter(self, adapter_path, adapter_name="default")
# Bind the method to the instance
peft_model.set_task = set_task_method.__get__(peft_model, type(peft_model))
return peft_model
|