|
import torch |
|
import math |
|
|
|
from abc import ABC, abstractmethod |
|
from PIL import Image |
|
|
|
from typing import Dict, List, Optional, Union, cast |
|
from typing_extensions import Unpack |
|
|
|
from transformers import BatchEncoding, BatchFeature |
|
from transformers.processing_utils import ( |
|
AllKwargsForChatTemplate, |
|
ImageInput, |
|
PreTokenizedInput, |
|
TextInput, |
|
VideoInput, |
|
) |
|
from transformers.models.qwen2_vl import Qwen2VLProcessor |
|
|
|
|
|
def get_torch_device(device: str = "auto") -> str: |
|
""" |
|
Returns the device (string) to be used by PyTorch. |
|
|
|
`device` arg defaults to "auto" which will use: |
|
- "cuda:0" if available |
|
- else "mps" if available |
|
- else "cpu". |
|
""" |
|
if device == "auto": |
|
if torch.cuda.is_available(): |
|
device = "cuda:0" |
|
elif torch.backends.mps.is_available(): |
|
device = "mps" |
|
else: |
|
device = "cpu" |
|
return device |
|
|
|
class BaseVisualRetrieverProcessor(ABC): |
|
""" |
|
Base class for visual retriever processors. |
|
""" |
|
|
|
@abstractmethod |
|
def process_images( |
|
self, |
|
images: List[Image.Image], |
|
) -> Union[BatchFeature, BatchEncoding]: |
|
pass |
|
|
|
@abstractmethod |
|
def process_texts( |
|
self, |
|
texts: List[str], |
|
max_length: int = 50, |
|
suffix: Optional[str] = None, |
|
prefix: Optional[str] = None, |
|
) -> Union[BatchFeature, BatchEncoding]: |
|
pass |
|
|
|
@abstractmethod |
|
def score( |
|
self, |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
device: Optional[Union[str, torch.device]] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
pass |
|
|
|
@staticmethod |
|
def score_single_vector( |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
device: Optional[Union[str, torch.device]] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the dot product score for the given single-vector query and passage embeddings. |
|
""" |
|
device = device or get_torch_device("auto") |
|
|
|
if len(qs) == 0: |
|
raise ValueError("No queries provided") |
|
if len(ps) == 0: |
|
raise ValueError("No passages provided") |
|
|
|
qs_stacked = torch.stack(qs).to(device) |
|
ps_stacked = torch.stack(ps).to(device) |
|
|
|
scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked) |
|
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" |
|
|
|
scores = scores.to(torch.float32) |
|
return scores |
|
|
|
@staticmethod |
|
def score_multi_vector( |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
batch_size: int = 128, |
|
device: Optional[Union[str, torch.device]] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. |
|
""" |
|
device = device or get_torch_device("auto") |
|
|
|
if len(qs) == 0: |
|
raise ValueError("No queries provided") |
|
if len(ps) == 0: |
|
raise ValueError("No passages provided") |
|
|
|
scores_list: List[torch.Tensor] = [] |
|
|
|
for i in range(0, len(qs), batch_size): |
|
scores_batch = [] |
|
qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i : i + batch_size], batch_first=True, padding_value=0).to( |
|
device |
|
) |
|
for j in range(0, len(ps), batch_size): |
|
ps_batch = torch.nn.utils.rnn.pad_sequence( |
|
ps[j : j + batch_size], batch_first=True, padding_value=0 |
|
).to(device) |
|
scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2)) |
|
scores_batch = torch.cat(scores_batch, dim=1).cpu() |
|
scores_list.append(scores_batch) |
|
|
|
scores = torch.cat(scores_list, dim=0) |
|
assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}" |
|
|
|
scores = scores.to(torch.float32) |
|
return scores |
|
|
|
|
|
|
|
class QwenVLProcessor(ABC): |
|
|
|
def __call__( |
|
self, |
|
images: Optional[ImageInput] = None, |
|
text: Optional[Union[TextInput, PreTokenizedInput, List[PreTokenizedInput]]] = None, |
|
videos: Optional[VideoInput] = None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
return super().__call__(images=images, text=text, videos=videos, **kwargs) |
|
|
|
def apply_chat_template( |
|
self, |
|
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]], |
|
chat_template: Optional[str] = None, |
|
**kwargs: Unpack[AllKwargsForChatTemplate], |
|
) -> str: |
|
return super().apply_chat_template(conversation=conversation, chat_template=chat_template, **kwargs) |
|
|
|
|
|
class QwenVLEmbeddingProcessorBase(BaseVisualRetrieverProcessor, QwenVLProcessor): |
|
|
|
assistant_prefix_len: int = 58 |
|
|
|
|
|
@staticmethod |
|
def round_by_factor(number: float, factor: int) -> int: |
|
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" |
|
return round(number / factor) * factor |
|
|
|
@staticmethod |
|
def ceil_by_factor(number: float, factor: int) -> int: |
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.ceil(number / factor) * factor |
|
|
|
@staticmethod |
|
def floor_by_factor(number: float, factor: int) -> int: |
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.floor(number / factor) * factor |
|
|
|
def process_images( |
|
self, |
|
images: Union[List[Image.Image], List[List[Image.Image]]], |
|
) -> BatchFeature: |
|
|
|
if isinstance(images[0], list): |
|
images = cast(List[List[Image.Image]], images) |
|
text_doc = [] |
|
for i in range(len(images)): |
|
conversation = [{"role": "user", "content": [{"type": "image"}] * len(images[i])}] |
|
template = self.apply_chat_template(conversation, add_generation_prompt=False) |
|
text_doc.append(template[self.assistant_prefix_len :]) |
|
|
|
else: |
|
images = cast(List[Image.Image], images) |
|
text_doc = [ |
|
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n" |
|
] * len(images) |
|
|
|
|
|
batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") |
|
|
|
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2] |
|
|
|
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist()) |
|
|
|
max_length = max([len(pv) for pv in pixel_values]) |
|
|
|
pixel_values = [ |
|
torch.cat([pv, torch.zeros((max_length - len(pv), pv.shape[1]), dtype=pv.dtype, device=pv.device)]) |
|
for pv in pixel_values |
|
] |
|
|
|
batch_doc["pixel_values"] = torch.stack(pixel_values) |
|
return batch_doc |
|
|
|
def process_texts( |
|
self, |
|
texts: List[str], |
|
max_length: int, |
|
suffix: Optional[str] = None, |
|
prefix: Optional[str] = None, |
|
padding: Optional[str] = None, |
|
) -> BatchFeature: |
|
|
|
if suffix is None: |
|
suffix = "<pad>" * 10 |
|
|
|
padded_texts: List[str] = [] |
|
|
|
for text in texts: |
|
if prefix: |
|
text = f"{prefix}: {text}" |
|
text += suffix |
|
padded_texts.append(text) |
|
|
|
text_batch = self( |
|
text=padded_texts, |
|
return_tensors="pt", |
|
padding=padding or "longest", |
|
max_length=max_length, |
|
truncation=True, |
|
) |
|
|
|
return text_batch |
|
|
|
|
|
|
|
|
|
class ColQwenDuoProcessorBase(QwenVLEmbeddingProcessorBase): |
|
""" |
|
Processor for ColQwenDuo. Mirrors the `ColQwen2Processor` class. |
|
""" |
|
|
|
def score( |
|
self, |
|
qs: List[torch.Tensor], |
|
ps: List[torch.Tensor], |
|
vector_type: str, |
|
device: Optional[Union[str, torch.device]] = None, |
|
truncate: Optional[int] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings. |
|
""" |
|
if truncate: |
|
qs = [q[..., :truncate] for q in qs] |
|
ps = [p[..., :truncate] for p in ps] |
|
|
|
if vector_type == "single_vector": |
|
return self.score_single_vector(qs, ps, device=device) |
|
elif vector_type == "multi_vector": |
|
return self.score_multi_vector(qs, ps, device=device, **kwargs) |
|
else: |
|
raise ValueError('vector_type must be one of the following: [`single_vector`, `multi_vector`]') |
|
|
|
|
|
class ColQwen2DuoProcessor(ColQwenDuoProcessorBase, Qwen2VLProcessor): |
|
def __init__(self, *args, **kwargs) -> None: |
|
Qwen2VLProcessor.__init__(self, *args, **kwargs) |
|
|
|
|