jina-embeddings-v4 / modeling_jina_embeddings_v4.py
jupyterjazz's picture
refactor-image-processing (#16)
f35e327 verified
raw
history blame
21.2 kB
# Jina Embeddings V4 Model implementation was inspired by the ColPali codebase:
# https://github.com/illuin-tech/colpali
import os
from dataclasses import dataclass
from enum import Enum
from functools import partial
from io import BytesIO
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
import numpy as np
import requests
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import BatchFeature
from transformers.utils import is_flash_attn_2_available
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
from .custom_lora_module import MultiAdapterLinear
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
class PromptType(str, Enum):
query = "query"
passage = "passage"
PREFIX_DICT = {"query": "Query", "passage": "Passage"}
VECTOR_TYPES = ["single_vector", "multi_vector"]
class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor):
def __init__(self, *args, **kwargs) -> None:
Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
self.assistant_prefix_len = 58
self.text_max_length = 8192
def process_images(
self,
images: Union[List[Image.Image], List[List[Image.Image]]],
) -> BatchFeature:
if isinstance(images[0], list):
images = cast(List[List[Image.Image]], images)
text_doc = []
for i in range(len(images)):
conversation = [
{"role": "user", "content": [{"type": "image"}] * len(images[i])}
]
template = self.apply_chat_template(
conversation, add_generation_prompt=False
)
text_doc.append(template[self.assistant_prefix_len :])
else:
images = cast(List[Image.Image], images)
text_doc = [
"<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
] * len(images)
# The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt") # type: ignore
# Separate pixel_values for each image
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
# Pad pixel_values to the same length to be able to make it into a tensor
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
max_length = max([len(pv) for pv in pixel_values])
pixel_values = [
torch.cat(
[
pv,
torch.zeros(
(max_length - len(pv), pv.shape[1]),
dtype=pv.dtype,
device=pv.device,
),
]
)
for pv in pixel_values
]
batch_doc["pixel_values"] = torch.stack(pixel_values)
return batch_doc
def process_texts(
self,
texts: List[str],
max_length: Optional[int] = None,
prefix: Optional[str] = None,
padding: Optional[str] = None,
) -> BatchFeature:
max_length = (
self.text_max_length
if max_length is None
else min(max_length, self.text_max_length)
)
padded_texts: List[str] = []
for text in texts:
if prefix:
text = f"{prefix}: {text}"
padded_texts.append(text)
text_batch = self(
text=padded_texts,
return_tensors="pt",
padding=padding or "longest",
max_length=max_length,
truncation=True,
)
return text_batch
@dataclass
class JinaEmbeddingsV4ModelOutput:
"""
Base class for the Hybrid Model outputs.
Args:
vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
"""
vlm_last_hidden_states: Optional[torch.Tensor] = None
single_vec_emb: Optional[torch.Tensor] = None
multi_vec_emb: Optional[torch.Tensor] = None
class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
config_class = JinaEmbeddingsV4Config
main_input_name: ClassVar[str] = "doc_input_ids"
def __init__(self, config: JinaEmbeddingsV4Config):
Qwen2_5_VLForConditionalGeneration.__init__(self, config)
self._init_projection_layers(config)
self.post_init()
self.processor = JinaEmbeddingsV4Processor.from_pretrained(
self.name_or_path, trust_remote_code=True, use_fast=True
)
self.single_vector_projector_dim = config.single_vector_projector_dim
self.multi_vector_projector_dim = config.multi_vector_projector_dim
self._task = None
@property
def task(self) -> Optional[str]:
"""Get the current task set for the model."""
return self._task
@task.setter
def task(self, task: str):
"""
Set the task for the model.
Args:
task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
"""
if task not in self.config.task_names:
raise ValueError(
f"Invalid task: {task}. Must be one of {self.config.task_names}."
)
self._task = task
def get_last_hidden_states(
self,
task_label: Union[str, List[str]],
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
**kwargs,
) -> torch.Tensor:
if "pixel_values" in kwargs:
offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
kwargs["pixel_values"] = torch.cat(
[pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
)
position_ids, rope_deltas = self.model.get_rope_index(
input_ids=input_ids,
image_grid_thw=kwargs.get("image_grid_thw", None),
attention_mask=attention_mask,
)
kwargs["output_hidden_states"] = True
outputs = super().forward(
task_label=task_label,
input_ids=input_ids,
attention_mask=attention_mask,
**kwargs,
position_ids=position_ids,
rope_deltas=rope_deltas,
use_cache=False,
)
hidden_states = outputs.hidden_states
if not hidden_states:
raise ValueError("Hidden states not found in model output")
return hidden_states[-1]
def _init_projection_layers(self, config) -> None:
"""
Initializes projection layers.
"""
self.config.single_vector_projector_dim = config.single_vector_projector_dim
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
self.single_vector_projector = nn.Linear(
in_features=self.config.text_config.hidden_size,
out_features=self.config.single_vector_projector_dim,
)
self.multi_vector_projector = nn.Linear(
in_features=self.config.text_config.hidden_size,
out_features=self.config.multi_vector_projector_dim,
)
def project_to_single_vector_embeddings(
self,
task_label: Union[str, List[str]],
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
input_ids: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
"""
Project the hidden states to single-vector embeddings.
"""
if self._input_has_image(input_ids[0]): # got document image
img_start_positions = torch.where(
input_ids == self.config.vision_start_token_id
)[1]
img_end_positions = torch.where(
input_ids == self.config.vision_end_token_id
)[1]
batch_size, seq_len = input_ids.shape
position_indices = torch.arange(seq_len, device=input_ids.device).expand(
batch_size, -1
)
image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & (
position_indices <= img_end_positions.unsqueeze(1)
)
masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(
dim=1, keepdim=True
)
else: # got query text
pooled_output = torch.sum(
hidden_states * attention_mask.unsqueeze(-1), dim=1
) / torch.sum(attention_mask, dim=1, keepdim=True)
single_vec_emb = self.single_vector_projector(
pooled_output, task_label=task_label
)
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
def project_to_multi_vector_embeddings(
self,
task_label: Union[str, List[str]],
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
"""
Project the hidden states to multi-vector embeddings.
"""
multi_vec_emb = self.multi_vector_projector(
hidden_states, task_label=task_label
)
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
return multi_vec_emb * attention_mask.unsqueeze(-1)
def _input_has_image(self, input_ids):
return self.config.vision_start_token_id in input_ids
def forward(
self,
task_label: Union[str, List[str]],
input_ids: torch.LongTensor,
attention_mask: torch.Tensor,
output_vlm_last_hidden_states: bool = False,
**kwargs,
) -> JinaEmbeddingsV4ModelOutput:
"""
Forward pass through the model. Returns both single-vector and multi-vector embeddings.
Args:
input_ids (torch.Tensor): The input tokens tensor.
attention_mask (torch.Tensor): The attention mask tensor.
Returns:
JinaEmbeddingsV4ModelOutput:
single_vector (torch.Tensor): Single-vector embeddings of shape (batch_size, dim).
multi_vector (torch.Tensor): Multi-vector embeddings of shape (batch_size, num_tokens, dim).
"""
# Forward pass through the VLM
hidden_states = self.get_last_hidden_states(
input_ids=input_ids,
attention_mask=attention_mask,
task_label=task_label,
**kwargs,
) # (batch_size, seq_length, hidden_size)
# Compute the embeddings
single_vec_emb = self.project_to_single_vector_embeddings(
hidden_states=hidden_states,
attention_mask=attention_mask,
input_ids=input_ids,
task_label=task_label,
)
multi_vec_emb = self.project_to_multi_vector_embeddings(
hidden_states=hidden_states,
attention_mask=attention_mask,
task_label=task_label,
)
return JinaEmbeddingsV4ModelOutput(
vlm_last_hidden_states=(
hidden_states if output_vlm_last_hidden_states else None
),
single_vec_emb=single_vec_emb,
multi_vec_emb=multi_vec_emb,
)
def _process_batches(
self,
data: List[Union[str, Image.Image]],
task_label: Union[str, List[str]],
processor_fn: Callable,
desc: str,
vector_type: str = "single_vector",
return_numpy: bool = False,
batch_size: int = 32,
truncate_dim: Optional[int] = None,
) -> Union[np.ndarray, List[torch.Tensor]]:
dataloader = DataLoader(
dataset=data,
batch_size=batch_size,
shuffle=False,
collate_fn=processor_fn,
)
results = []
self.eval()
for batch in tqdm(dataloader, desc=desc):
with torch.no_grad():
batch = {k: v.to(self.device) for k, v in batch.items()}
with torch.autocast(
device_type=torch.device(self.device).type, dtype=torch.bfloat16
):
embeddings = self(**batch, task_label=task_label)
if vector_type == "single_vector":
embeddings = embeddings.single_vec_emb
if truncate_dim is not None:
embeddings = embeddings[:, :truncate_dim]
else:
embeddings = embeddings.multi_vec_emb
results.append(
embeddings.cpu()
if return_numpy
else list(torch.unbind(embeddings))
)
if return_numpy:
return np.concatenate([result.numpy() for result in results], axis=0)
return [item for sublist in results for item in sublist]
def _validate_encoding_params(
self,
vector_type: Optional[str] = None,
truncate_dim: Optional[int] = None,
prompt_name: Optional[str] = None,
) -> Dict[str, Any]:
encode_kwargs = {}
if prompt_name is not None:
if prompt_name not in PREFIX_DICT:
raise ValueError(
f"Invalid prompt_name: {prompt_name}. Must be one of {list(PREFIX_DICT.keys())}."
)
else:
encode_kwargs["prefix"] = (
PREFIX_DICT[prompt_name]
if self.task != "text-matching"
else PREFIX_DICT["query"]
)
vector_type = vector_type or "single_vector"
if vector_type not in VECTOR_TYPES:
raise ValueError(
f"Invalid vector_type: {vector_type}. Must be one of {VECTOR_TYPES}."
)
else:
encode_kwargs["vector_type"] = vector_type
truncate_dim = truncate_dim or self.config.truncate_dim
if truncate_dim is not None and truncate_dim not in self.config.matryoshka_dims:
raise ValueError(
f"Invalid truncate_dim: {truncate_dim}. Must be one of {self.config.matryoshka_dims}."
)
else:
encode_kwargs["truncate_dim"] = truncate_dim
return encode_kwargs
def _validate_task(self, task: Optional[str] = None) -> str:
if task is None:
if self.task is None:
raise ValueError(
"Task must be specified before encoding data. You can set it either as a model property "
"(e.g., model.task = 'retrieval') or pass it as an argument to the encode method."
)
task = self.task
else:
if task not in self.config.task_names:
raise ValueError(
f"Invalid task: {task}. Must be one of {self.config.task_names}."
)
return task
def encode_texts(
self,
texts: List[str],
task: Optional[str] = None,
max_length: int = 8192,
batch_size: int = 8,
vector_type: Optional[str] = None,
return_numpy: bool = False,
truncate_dim: Optional[int] = None,
prompt_name: Optional[str] = None,
) -> List[torch.Tensor]:
"""
Encodes a list of texts into embeddings.
Args:
texts: List of text strings to encode
max_length: Maximum token length for text processing
batch_size: Number of texts to process at once
vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector')
return_numpy: Whether to return numpy arrays instead of torch tensors
truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024)
prompt_name: Type of text being encoded ('query' or 'passage')
Returns:
List of text embeddings as tensors or numpy arrays
"""
prompt_name = prompt_name or "query"
encode_kwargs = self._validate_encoding_params(
vector_type, truncate_dim, prompt_name
)
task = self._validate_task(task)
processor_fn = partial(
self.processor.process_texts,
max_length=max_length,
prefix=encode_kwargs.pop("prefix"),
)
embeddings = self._process_batches(
data=texts,
processor_fn=processor_fn,
desc="Encoding texts...",
task_label=task,
return_numpy=return_numpy,
batch_size=batch_size,
**encode_kwargs,
)
return embeddings
def _load_images_if_needed(
self, images: List[Union[str, Image.Image]]
) -> List[Image.Image]:
loaded_images = []
for image in images:
if isinstance(image, str):
if image.startswith("http"):
response = requests.get(image)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image).convert("RGB")
loaded_images.append(image)
return loaded_images
def encode_images(
self,
images: List[Union[str, Image.Image]],
task: Optional[str] = None,
batch_size: int = 8,
vector_type: Optional[str] = None,
return_numpy: bool = False,
truncate_dim: Optional[int] = None,
max_pixels: Optional[int] = None,
) -> List[torch.Tensor]:
"""
Encodes a list of images into embeddings.
Args:
images: List of PIL images, URLs, or local file paths to encode
batch_size: Number of images to process at once
vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector')
return_numpy: Whether to return numpy arrays instead of torch tensors
truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024)
max_pixels: Maximum number of pixels to process per image
Returns:
List of image embeddings as tensors or numpy arrays
"""
if max_pixels:
default_max_pixels = self.processor.image_processor.max_pixels
self.processor.image_processor.max_pixels = (
max_pixels # change during encoding
)
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
task = self._validate_task(task)
images = self._load_images_if_needed(images)
embeddings = self._process_batches(
data=images,
processor_fn=self.processor.process_images,
desc="Encoding images...",
task_label=task,
batch_size=batch_size,
return_numpy=return_numpy,
**encode_kwargs,
)
if max_pixels:
self.processor.image_processor.max_pixels = default_max_pixels
return embeddings
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
*args,
**kwargs,
):
"""
Loads a pretrained model and configures it with the appropriate task adapter (`retrieval` by default).
"""
if "torch_dtype" not in kwargs:
kwargs["torch_dtype"] = "auto"
kwargs["key_mapping"] = super()._checkpoint_conversion_mapping
if not is_flash_attn_2_available():
kwargs["attn_implementation"] = "sdpa"
base_model = super().from_pretrained(
pretrained_model_name_or_path, *args, **kwargs
)
# Configure adapter directory
if os.path.isdir(base_model.name_or_path):
adapter_dir = os.path.join(base_model.name_or_path, "adapters")
else:
adapter_cache_path = snapshot_download(
repo_id=base_model.name_or_path, allow_patterns=["adapters/*"]
)
adapter_dir = os.path.join(adapter_cache_path, "adapters")
lora_config = LoraConfig.from_pretrained(adapter_dir)
lora_config._custom_modules = {
torch.nn.modules.linear.Linear: partial(
MultiAdapterLinear,
task_names=base_model.config.task_names,
)
}
peft_model = PeftModel.from_pretrained(
model=base_model,
model_id=adapter_dir,
config=lora_config,
)
@property
def task(self):
return self.model.task
@task.setter
def task(self, value):
self.model.task = value
peft_model.task = property(task.fget, task.fset)
peft_model.__class__.task = property(
lambda self: self.model.task,
lambda self, value: setattr(self.model, "task", value),
)
return peft_model