jlchen-c commited on
Commit
1dcff34
·
verified ·
1 Parent(s): 31d5f11

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Math-7B
3
+ library_name: transformers
4
+ model_name: Qwen-2.5-7B-Simple-RL
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen-2.5-7B-Simple-RL
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="jlchen-c/Qwen-2.5-7B-Simple-RL", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jun-liang-chen-the-hong-kong-polytechnic-university/huggingface/runs/czqrqax3)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.027036830155200475,
4
+ "train_runtime": 281082.0852,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.027,
7
+ "train_steps_per_second": 0.001
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 4096,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 10000,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.49.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42712c9569b2980599252a40db264d2d1c08c116a7d552ec7b5bdb051d949b2b
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e04adf4708f0377e2df413936055a264f94570ec1cf509b517212be76a1a036
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe17ddeef939048814b042e4aa1e4f9ab07697fa5ab028c15f65110342623024
3
+ size 4330865200
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7dcdf332fdd5d2fb6991cc373e71db11897bebe7c65364593a931650149ca68
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.027036830155200475,
4
+ "train_runtime": 281082.0852,
5
+ "train_samples": 7500,
6
+ "train_samples_per_second": 0.027,
7
+ "train_steps_per_second": 0.001
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9981333333333333,
5
+ "eval_steps": 100,
6
+ "global_step": 394,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 427.0421132940995,
13
+ "epoch": 0.012666666666666666,
14
+ "grad_norm": 0.32669389247894287,
15
+ "kl": 0.00012453716052205938,
16
+ "learning_rate": 3.75e-07,
17
+ "loss": 0.0,
18
+ "reward": 0.41754386942637595,
19
+ "reward_std": 0.3627968850888704,
20
+ "rewards/accuracy_reward": 0.41754386942637595,
21
+ "rewards/format_reward": 0.0,
22
+ "step": 5
23
+ },
24
+ {
25
+ "completion_length": 425.203517552426,
26
+ "epoch": 0.025333333333333333,
27
+ "grad_norm": 0.17229685187339783,
28
+ "kl": 0.00020355676349840667,
29
+ "learning_rate": 7.5e-07,
30
+ "loss": 0.0,
31
+ "reward": 0.44912281726535996,
32
+ "reward_std": 0.38365785103095207,
33
+ "rewards/accuracy_reward": 0.4473684310913086,
34
+ "rewards/format_reward": 0.0017543860171970569,
35
+ "step": 10
36
+ },
37
+ {
38
+ "completion_length": 408.717552265368,
39
+ "epoch": 0.038,
40
+ "grad_norm": 1.1077690124511719,
41
+ "kl": 0.000245641407213713,
42
+ "learning_rate": 1.125e-06,
43
+ "loss": 0.0,
44
+ "reward": 0.4894736951903293,
45
+ "reward_std": 0.3999988314352537,
46
+ "rewards/accuracy_reward": 0.4894736951903293,
47
+ "rewards/format_reward": 0.0,
48
+ "step": 15
49
+ },
50
+ {
51
+ "completion_length": 427.90176263106497,
52
+ "epoch": 0.050666666666666665,
53
+ "grad_norm": 0.2539248466491699,
54
+ "kl": 0.0002711948595548931,
55
+ "learning_rate": 1.5e-06,
56
+ "loss": 0.0,
57
+ "reward": 0.41403509911737946,
58
+ "reward_std": 0.3837312685815912,
59
+ "rewards/accuracy_reward": 0.41403509911737946,
60
+ "rewards/format_reward": 0.0,
61
+ "step": 20
62
+ },
63
+ {
64
+ "completion_length": 433.0245695415296,
65
+ "epoch": 0.06333333333333334,
66
+ "grad_norm": 0.2533121407032013,
67
+ "kl": 0.0006697002210115132,
68
+ "learning_rate": 1.875e-06,
69
+ "loss": 0.0,
70
+ "reward": 0.45087720328255704,
71
+ "reward_std": 0.356808750880392,
72
+ "rewards/accuracy_reward": 0.45087720328255704,
73
+ "rewards/format_reward": 0.0,
74
+ "step": 25
75
+ },
76
+ {
77
+ "completion_length": 429.6824665270354,
78
+ "epoch": 0.076,
79
+ "grad_norm": 0.5356761813163757,
80
+ "kl": 0.00229949951171875,
81
+ "learning_rate": 2.25e-06,
82
+ "loss": 0.0001,
83
+ "reward": 0.4789473784597296,
84
+ "reward_std": 0.37421235348048965,
85
+ "rewards/accuracy_reward": 0.4789473784597296,
86
+ "rewards/format_reward": 0.0,
87
+ "step": 30
88
+ },
89
+ {
90
+ "completion_length": 457.07193699886926,
91
+ "epoch": 0.08866666666666667,
92
+ "grad_norm": 0.1357738971710205,
93
+ "kl": 0.003329066226356908,
94
+ "learning_rate": 2.6250000000000003e-06,
95
+ "loss": 0.0001,
96
+ "reward": 0.4421052750788237,
97
+ "reward_std": 0.3569242841319034,
98
+ "rewards/accuracy_reward": 0.4421052750788237,
99
+ "rewards/format_reward": 0.0,
100
+ "step": 35
101
+ },
102
+ {
103
+ "completion_length": 445.33860441509046,
104
+ "epoch": 0.10133333333333333,
105
+ "grad_norm": 0.10597766935825348,
106
+ "kl": 0.0031187559428967927,
107
+ "learning_rate": 3e-06,
108
+ "loss": 0.0001,
109
+ "reward": 0.45789474844932554,
110
+ "reward_std": 0.4124853529428181,
111
+ "rewards/accuracy_reward": 0.45789474844932554,
112
+ "rewards/format_reward": 0.0,
113
+ "step": 40
114
+ },
115
+ {
116
+ "completion_length": 448.7719392475329,
117
+ "epoch": 0.114,
118
+ "grad_norm": 0.08034415543079376,
119
+ "kl": 0.003262630261872944,
120
+ "learning_rate": 2.998523534736735e-06,
121
+ "loss": 0.0001,
122
+ "reward": 0.46666667869216516,
123
+ "reward_std": 0.3817528630557813,
124
+ "rewards/accuracy_reward": 0.46666667869216516,
125
+ "rewards/format_reward": 0.0,
126
+ "step": 45
127
+ },
128
+ {
129
+ "completion_length": 443.4122892680921,
130
+ "epoch": 0.12666666666666668,
131
+ "grad_norm": 0.14021478593349457,
132
+ "kl": 0.5420216209010074,
133
+ "learning_rate": 2.994097045546504e-06,
134
+ "loss": 0.0217,
135
+ "reward": 0.48421053682502946,
136
+ "reward_std": 0.32790782702596566,
137
+ "rewards/accuracy_reward": 0.48421053682502946,
138
+ "rewards/format_reward": 0.0,
139
+ "step": 50
140
+ },
141
+ {
142
+ "completion_length": 448.9508853310033,
143
+ "epoch": 0.13933333333333334,
144
+ "grad_norm": 0.6121841073036194,
145
+ "kl": 0.006950779965049342,
146
+ "learning_rate": 2.986729246506011e-06,
147
+ "loss": 0.0003,
148
+ "reward": 0.49122808010954605,
149
+ "reward_std": 0.3300354468195062,
150
+ "rewards/accuracy_reward": 0.49122808010954605,
151
+ "rewards/format_reward": 0.0,
152
+ "step": 55
153
+ },
154
+ {
155
+ "completion_length": 450.8982540732936,
156
+ "epoch": 0.152,
157
+ "grad_norm": 0.1517709642648697,
158
+ "kl": 0.0043995104337993425,
159
+ "learning_rate": 2.976434642014389e-06,
160
+ "loss": 0.0002,
161
+ "reward": 0.4894736973862899,
162
+ "reward_std": 0.37877445064092935,
163
+ "rewards/accuracy_reward": 0.4894736973862899,
164
+ "rewards/format_reward": 0.0,
165
+ "step": 60
166
+ },
167
+ {
168
+ "completion_length": 434.9368501362048,
169
+ "epoch": 0.16466666666666666,
170
+ "grad_norm": 0.19329309463500977,
171
+ "kl": 0.003864890650699013,
172
+ "learning_rate": 2.9632334982395456e-06,
173
+ "loss": 0.0002,
174
+ "reward": 0.5245614123971839,
175
+ "reward_std": 0.35019483064350326,
176
+ "rewards/accuracy_reward": 0.5245614123971839,
177
+ "rewards/format_reward": 0.0,
178
+ "step": 65
179
+ },
180
+ {
181
+ "completion_length": 443.1368523848684,
182
+ "epoch": 0.17733333333333334,
183
+ "grad_norm": 0.005799734033644199,
184
+ "kl": 0.0037913272255345395,
185
+ "learning_rate": 2.947151803221774e-06,
186
+ "loss": 0.0002,
187
+ "reward": 0.4964912386317002,
188
+ "reward_std": 0.3756070852279663,
189
+ "rewards/accuracy_reward": 0.4964912386317002,
190
+ "rewards/format_reward": 0.0,
191
+ "step": 70
192
+ },
193
+ {
194
+ "completion_length": 451.34737677323193,
195
+ "epoch": 0.19,
196
+ "grad_norm": 0.12151838839054108,
197
+ "kl": 0.004369795949835526,
198
+ "learning_rate": 2.928221215713164e-06,
199
+ "loss": 0.0002,
200
+ "reward": 0.470175449158016,
201
+ "reward_std": 0.38960387110710143,
202
+ "rewards/accuracy_reward": 0.470175449158016,
203
+ "rewards/format_reward": 0.0,
204
+ "step": 75
205
+ },
206
+ {
207
+ "completion_length": 434.12632606907897,
208
+ "epoch": 0.20266666666666666,
209
+ "grad_norm": 0.2288283258676529,
210
+ "kl": 0.013469414961965461,
211
+ "learning_rate": 2.906479002853542e-06,
212
+ "loss": 0.0005,
213
+ "reward": 0.48245615080783244,
214
+ "reward_std": 0.36099056883862146,
215
+ "rewards/accuracy_reward": 0.48245615080783244,
216
+ "rewards/format_reward": 0.0,
217
+ "step": 80
218
+ },
219
+ {
220
+ "completion_length": 437.27369481136924,
221
+ "epoch": 0.21533333333333332,
222
+ "grad_norm": 0.18831907212734222,
223
+ "kl": 0.015026534231085527,
224
+ "learning_rate": 2.8819679668056195e-06,
225
+ "loss": 0.0006,
226
+ "reward": 0.5157894862325568,
227
+ "reward_std": 0.39665700228590717,
228
+ "rewards/accuracy_reward": 0.5157894862325568,
229
+ "rewards/format_reward": 0.0,
230
+ "step": 85
231
+ },
232
+ {
233
+ "completion_length": 440.3596586528577,
234
+ "epoch": 0.228,
235
+ "grad_norm": 0.004888650495558977,
236
+ "kl": 2.206267828690378,
237
+ "learning_rate": 2.8547363604937856e-06,
238
+ "loss": 0.0884,
239
+ "reward": 0.49298246753843206,
240
+ "reward_std": 0.3442464342242793,
241
+ "rewards/accuracy_reward": 0.49298246753843206,
242
+ "rewards/format_reward": 0.0,
243
+ "step": 90
244
+ },
245
+ {
246
+ "completion_length": 442.4719376413446,
247
+ "epoch": 0.24066666666666667,
248
+ "grad_norm": 0.1227022334933281,
249
+ "kl": 0.0068352950246710524,
250
+ "learning_rate": 2.824837792612416e-06,
251
+ "loss": 0.0003,
252
+ "reward": 0.5210526447547109,
253
+ "reward_std": 0.33440621652101216,
254
+ "rewards/accuracy_reward": 0.5210526447547109,
255
+ "rewards/format_reward": 0.0,
256
+ "step": 95
257
+ },
258
+ {
259
+ "completion_length": 431.6807120875308,
260
+ "epoch": 0.25333333333333335,
261
+ "grad_norm": 0.18928714096546173,
262
+ "kl": 0.008197182103207237,
263
+ "learning_rate": 2.792331122090709e-06,
264
+ "loss": 0.0003,
265
+ "reward": 0.5385965028875752,
266
+ "reward_std": 0.35269192080748707,
267
+ "rewards/accuracy_reward": 0.5385965028875752,
268
+ "rewards/format_reward": 0.0,
269
+ "step": 100
270
+ },
271
+ {
272
+ "epoch": 0.25333333333333335,
273
+ "eval_completion_length": 435.9969423065186,
274
+ "eval_kl": 0.009833270263671876,
275
+ "eval_loss": 0.00039347587153315544,
276
+ "eval_reward": 0.4568000102430582,
277
+ "eval_reward_std": 0.3654944499373436,
278
+ "eval_rewards/accuracy_reward": 0.4568000102430582,
279
+ "eval_rewards/format_reward": 0.0,
280
+ "eval_runtime": 48530.4928,
281
+ "eval_samples_per_second": 0.103,
282
+ "eval_steps_per_second": 0.017,
283
+ "step": 100
284
+ },
285
+ {
286
+ "completion_length": 437.9824650814659,
287
+ "epoch": 0.266,
288
+ "grad_norm": 0.12078626453876495,
289
+ "kl": 0.008320858604029605,
290
+ "learning_rate": 2.7572803422217976e-06,
291
+ "loss": 0.0003,
292
+ "reward": 0.5263158009240502,
293
+ "reward_std": 0.37190421505978233,
294
+ "rewards/accuracy_reward": 0.5263158009240502,
295
+ "rewards/format_reward": 0.0,
296
+ "step": 105
297
+ },
298
+ {
299
+ "completion_length": 439.51228991056746,
300
+ "epoch": 0.2786666666666667,
301
+ "grad_norm": 0.13941198587417603,
302
+ "kl": 0.0077880859375,
303
+ "learning_rate": 2.71975445468425e-06,
304
+ "loss": 0.0003,
305
+ "reward": 0.49122808167808935,
306
+ "reward_std": 0.4313258014227215,
307
+ "rewards/accuracy_reward": 0.49122808167808935,
308
+ "rewards/format_reward": 0.0,
309
+ "step": 110
310
+ },
311
+ {
312
+ "completion_length": 421.4017642372533,
313
+ "epoch": 0.29133333333333333,
314
+ "grad_norm": 0.10381676256656647,
315
+ "kl": 0.00989588687294408,
316
+ "learning_rate": 2.679827333703964e-06,
317
+ "loss": 0.0004,
318
+ "reward": 0.5719298359594847,
319
+ "reward_std": 0.3785097053176478,
320
+ "rewards/accuracy_reward": 0.5719298359594847,
321
+ "rewards/format_reward": 0.0,
322
+ "step": 115
323
+ },
324
+ {
325
+ "completion_length": 421.6526407342208,
326
+ "epoch": 0.304,
327
+ "grad_norm": 0.2092106193304062,
328
+ "kl": 0.010035464638157895,
329
+ "learning_rate": 2.637577580623858e-06,
330
+ "loss": 0.0004,
331
+ "reward": 0.5859649266067304,
332
+ "reward_std": 0.3874762525683955,
333
+ "rewards/accuracy_reward": 0.5859649266067304,
334
+ "rewards/format_reward": 0.0,
335
+ "step": 120
336
+ },
337
+ {
338
+ "completion_length": 414.329833984375,
339
+ "epoch": 0.31666666666666665,
340
+ "grad_norm": 0.23555059731006622,
341
+ "kl": 0.009284732216282895,
342
+ "learning_rate": 2.593088369167671e-06,
343
+ "loss": 0.0004,
344
+ "reward": 0.62280702794853,
345
+ "reward_std": 0.32933386564254763,
346
+ "rewards/accuracy_reward": 0.62280702794853,
347
+ "rewards/format_reward": 0.0,
348
+ "step": 125
349
+ },
350
+ {
351
+ "completion_length": 417.16316656815377,
352
+ "epoch": 0.3293333333333333,
353
+ "grad_norm": 0.12066253274679184,
354
+ "kl": 0.012572599712171053,
355
+ "learning_rate": 2.5464472817024772e-06,
356
+ "loss": 0.0005,
357
+ "reward": 0.6175438719360452,
358
+ "reward_std": 0.3299596526120838,
359
+ "rewards/accuracy_reward": 0.6175438719360452,
360
+ "rewards/format_reward": 0.0,
361
+ "step": 130
362
+ },
363
+ {
364
+ "completion_length": 429.32106323242186,
365
+ "epoch": 0.342,
366
+ "grad_norm": 0.14316421747207642,
367
+ "kl": 0.015025570518092106,
368
+ "learning_rate": 2.497746136822254e-06,
369
+ "loss": 0.0006,
370
+ "reward": 0.5842105401189703,
371
+ "reward_std": 0.3870730996131897,
372
+ "rewards/accuracy_reward": 0.5842105401189703,
373
+ "rewards/format_reward": 0.0,
374
+ "step": 135
375
+ },
376
+ {
377
+ "completion_length": 429.531587942023,
378
+ "epoch": 0.3546666666666667,
379
+ "grad_norm": 0.14851997792720795,
380
+ "kl": 0.02211560701069079,
381
+ "learning_rate": 2.4470808085919304e-06,
382
+ "loss": 0.0009,
383
+ "reward": 0.5649122933023855,
384
+ "reward_std": 0.35544770171767787,
385
+ "rewards/accuracy_reward": 0.5649122933023855,
386
+ "rewards/format_reward": 0.0,
387
+ "step": 140
388
+ },
389
+ {
390
+ "completion_length": 447.08246427837173,
391
+ "epoch": 0.36733333333333335,
392
+ "grad_norm": 0.10792040824890137,
393
+ "kl": 0.017962325246710525,
394
+ "learning_rate": 2.3945510378077523e-06,
395
+ "loss": 0.0007,
396
+ "reward": 0.5122807138844541,
397
+ "reward_std": 0.35567033479088234,
398
+ "rewards/accuracy_reward": 0.5122807138844541,
399
+ "rewards/format_reward": 0.0,
400
+ "step": 145
401
+ },
402
+ {
403
+ "completion_length": 423.1122905530428,
404
+ "epoch": 0.38,
405
+ "grad_norm": 0.11955911666154861,
406
+ "kl": 0.02356021278782895,
407
+ "learning_rate": 2.340260235645519e-06,
408
+ "loss": 0.0009,
409
+ "reward": 0.5578947500178688,
410
+ "reward_std": 0.36022400009004696,
411
+ "rewards/accuracy_reward": 0.5578947500178688,
412
+ "rewards/format_reward": 0.0,
413
+ "step": 150
414
+ },
415
+ {
416
+ "completion_length": 409.61053514982524,
417
+ "epoch": 0.39266666666666666,
418
+ "grad_norm": 0.09739726036787033,
419
+ "kl": 0.018040385999177632,
420
+ "learning_rate": 2.2843152800832416e-06,
421
+ "loss": 0.0007,
422
+ "reward": 0.6157894856051395,
423
+ "reward_std": 0.34050145086489225,
424
+ "rewards/accuracy_reward": 0.6157894856051395,
425
+ "rewards/format_reward": 0.0,
426
+ "step": 155
427
+ },
428
+ {
429
+ "completion_length": 404.34913137335525,
430
+ "epoch": 0.4053333333333333,
431
+ "grad_norm": 0.004406505264341831,
432
+ "kl": 0.02299708316200658,
433
+ "learning_rate": 2.2268263054989753e-06,
434
+ "loss": 0.0009,
435
+ "reward": 0.5842105368250294,
436
+ "reward_std": 0.3406506648189143,
437
+ "rewards/accuracy_reward": 0.5842105368250294,
438
+ "rewards/format_reward": 0.0,
439
+ "step": 160
440
+ },
441
+ {
442
+ "completion_length": 407.5386057000411,
443
+ "epoch": 0.418,
444
+ "grad_norm": 0.18651004135608673,
445
+ "kl": 0.05064440275493421,
446
+ "learning_rate": 2.167906485858047e-06,
447
+ "loss": 0.002,
448
+ "reward": 0.6210526471075258,
449
+ "reward_std": 0.32974544889048524,
450
+ "rewards/accuracy_reward": 0.6210526471075258,
451
+ "rewards/format_reward": 0.0,
452
+ "step": 165
453
+ },
454
+ {
455
+ "completion_length": 409.0772017629523,
456
+ "epoch": 0.43066666666666664,
457
+ "grad_norm": 0.13046123087406158,
458
+ "kl": 0.06625655324835526,
459
+ "learning_rate": 2.1076718119164804e-06,
460
+ "loss": 0.0026,
461
+ "reward": 0.5631579061872081,
462
+ "reward_std": 0.37127605362942345,
463
+ "rewards/accuracy_reward": 0.5631579061872081,
464
+ "rewards/format_reward": 0.0,
465
+ "step": 170
466
+ },
467
+ {
468
+ "completion_length": 402.12983334189965,
469
+ "epoch": 0.44333333333333336,
470
+ "grad_norm": 0.10294575989246368,
471
+ "kl": 0.027840383429276316,
472
+ "learning_rate": 2.0462408628792335e-06,
473
+ "loss": 0.0011,
474
+ "reward": 0.6105263289652373,
475
+ "reward_std": 0.35427797938648026,
476
+ "rewards/accuracy_reward": 0.6105263289652373,
477
+ "rewards/format_reward": 0.0,
478
+ "step": 175
479
+ },
480
+ {
481
+ "completion_length": 419.62632414165296,
482
+ "epoch": 0.456,
483
+ "grad_norm": 0.20833256840705872,
484
+ "kl": 0.029789974814967105,
485
+ "learning_rate": 1.9837345729627633e-06,
486
+ "loss": 0.0012,
487
+ "reward": 0.5614035218954087,
488
+ "reward_std": 0.3542021836105146,
489
+ "rewards/accuracy_reward": 0.5614035218954087,
490
+ "rewards/format_reward": 0.0,
491
+ "step": 180
492
+ },
493
+ {
494
+ "completion_length": 417.81930590177836,
495
+ "epoch": 0.4686666666666667,
496
+ "grad_norm": 0.012007645331323147,
497
+ "kl": 0.02894447728207237,
498
+ "learning_rate": 1.9202759933214665e-06,
499
+ "loss": 0.0012,
500
+ "reward": 0.5105263262987136,
501
+ "reward_std": 0.34277828335762023,
502
+ "rewards/accuracy_reward": 0.5105263262987136,
503
+ "rewards/format_reward": 0.0,
504
+ "step": 185
505
+ },
506
+ {
507
+ "completion_length": 395.12457034462375,
508
+ "epoch": 0.48133333333333334,
509
+ "grad_norm": 0.15910613536834717,
510
+ "kl": 0.031014532791940788,
511
+ "learning_rate": 1.8559900498066726e-06,
512
+ "loss": 0.0012,
513
+ "reward": 0.5754386062684812,
514
+ "reward_std": 0.31805680268689207,
515
+ "rewards/accuracy_reward": 0.5754386062684812,
516
+ "rewards/format_reward": 0.0,
517
+ "step": 190
518
+ },
519
+ {
520
+ "completion_length": 399.89123856393917,
521
+ "epoch": 0.494,
522
+ "grad_norm": 0.20715074241161346,
523
+ "kl": 0.03553081311677632,
524
+ "learning_rate": 1.7910032970350677e-06,
525
+ "loss": 0.0014,
526
+ "reward": 0.5456140458583831,
527
+ "reward_std": 0.37994654994261895,
528
+ "rewards/accuracy_reward": 0.5456140458583831,
529
+ "rewards/format_reward": 0.0,
530
+ "step": 195
531
+ },
532
+ {
533
+ "completion_length": 407.15264089483964,
534
+ "epoch": 0.5066666666666667,
535
+ "grad_norm": 0.29204627871513367,
536
+ "kl": 0.03386648077713816,
537
+ "learning_rate": 1.7254436692507058e-06,
538
+ "loss": 0.0014,
539
+ "reward": 0.5596491352507943,
540
+ "reward_std": 0.3601168986998106,
541
+ "rewards/accuracy_reward": 0.5596491352507943,
542
+ "rewards/format_reward": 0.0,
543
+ "step": 200
544
+ },
545
+ {
546
+ "epoch": 0.5066666666666667,
547
+ "eval_completion_length": 394.2290429840088,
548
+ "eval_kl": 0.04040946655273438,
549
+ "eval_loss": 0.0015893690288066864,
550
+ "eval_reward": 0.49966667771935463,
551
+ "eval_reward_std": 0.3627293815135956,
552
+ "eval_rewards/accuracy_reward": 0.49966667771935463,
553
+ "eval_rewards/format_reward": 0.0,
554
+ "eval_runtime": 47257.0811,
555
+ "eval_samples_per_second": 0.106,
556
+ "eval_steps_per_second": 0.018,
557
+ "step": 200
558
+ },
559
+ {
560
+ "completion_length": 397.5421145790502,
561
+ "epoch": 0.5193333333333333,
562
+ "grad_norm": 0.1434248983860016,
563
+ "kl": 0.046006373355263155,
564
+ "learning_rate": 1.6594402284710481e-06,
565
+ "loss": 0.0018,
566
+ "reward": 0.6000000109798029,
567
+ "reward_std": 0.3170362949371338,
568
+ "rewards/accuracy_reward": 0.6000000109798029,
569
+ "rewards/format_reward": 0.0,
570
+ "step": 205
571
+ },
572
+ {
573
+ "completion_length": 389.34562474300986,
574
+ "epoch": 0.532,
575
+ "grad_norm": 0.21728208661079407,
576
+ "kl": 0.06839278371710526,
577
+ "learning_rate": 1.593122910412851e-06,
578
+ "loss": 0.0027,
579
+ "reward": 0.591228081991798,
580
+ "reward_std": 0.3792112864946064,
581
+ "rewards/accuracy_reward": 0.591228081991798,
582
+ "rewards/format_reward": 0.0,
583
+ "step": 210
584
+ },
585
+ {
586
+ "completion_length": 393.13334222090873,
587
+ "epoch": 0.5446666666666666,
588
+ "grad_norm": 4.170770168304443,
589
+ "kl": 0.08757773951480263,
590
+ "learning_rate": 1.5266222686980693e-06,
591
+ "loss": 0.0035,
592
+ "reward": 0.41929825356132105,
593
+ "reward_std": 0.33843882052521956,
594
+ "rewards/accuracy_reward": 0.41929825356132105,
595
+ "rewards/format_reward": 0.0,
596
+ "step": 215
597
+ },
598
+ {
599
+ "completion_length": 402.3175527472245,
600
+ "epoch": 0.5573333333333333,
601
+ "grad_norm": 0.04682053253054619,
602
+ "kl": 0.10470291940789474,
603
+ "learning_rate": 1.460069217843338e-06,
604
+ "loss": 0.0042,
605
+ "reward": 0.3122807102768045,
606
+ "reward_std": 0.35611560125099984,
607
+ "rewards/accuracy_reward": 0.3122807102768045,
608
+ "rewards/format_reward": 0.0,
609
+ "step": 220
610
+ },
611
+ {
612
+ "completion_length": 421.3649226138466,
613
+ "epoch": 0.57,
614
+ "grad_norm": 0.3474079668521881,
615
+ "kl": 0.09076377467105264,
616
+ "learning_rate": 1.3935947755389924e-06,
617
+ "loss": 0.0036,
618
+ "reward": 0.27719298852117435,
619
+ "reward_std": 0.33377805352211,
620
+ "rewards/accuracy_reward": 0.27719298852117435,
621
+ "rewards/format_reward": 0.0,
622
+ "step": 225
623
+ },
624
+ {
625
+ "completion_length": 413.22983430561266,
626
+ "epoch": 0.5826666666666667,
627
+ "grad_norm": 0.5406464338302612,
628
+ "kl": 0.07656506990131579,
629
+ "learning_rate": 1.3273298047249756e-06,
630
+ "loss": 0.0031,
631
+ "reward": 0.3421052706869025,
632
+ "reward_std": 0.40586905918623273,
633
+ "rewards/accuracy_reward": 0.3421052706869025,
634
+ "rewards/format_reward": 0.0,
635
+ "step": 230
636
+ },
637
+ {
638
+ "completion_length": 391.9754479659231,
639
+ "epoch": 0.5953333333333334,
640
+ "grad_norm": 0.6628542542457581,
641
+ "kl": 0.07627788342927631,
642
+ "learning_rate": 1.2614047559713923e-06,
643
+ "loss": 0.0031,
644
+ "reward": 0.47192983580263037,
645
+ "reward_std": 0.3767852387930218,
646
+ "rewards/accuracy_reward": 0.47192983580263037,
647
+ "rewards/format_reward": 0.0,
648
+ "step": 235
649
+ },
650
+ {
651
+ "completion_length": 398.3614137348376,
652
+ "epoch": 0.608,
653
+ "grad_norm": 0.22894343733787537,
654
+ "kl": 0.09133493523848685,
655
+ "learning_rate": 1.1959494106708598e-06,
656
+ "loss": 0.0037,
657
+ "reward": 0.4543859756306598,
658
+ "reward_std": 0.41446375846862793,
659
+ "rewards/accuracy_reward": 0.4543859756306598,
660
+ "rewards/format_reward": 0.0,
661
+ "step": 240
662
+ },
663
+ {
664
+ "completion_length": 382.73158842387954,
665
+ "epoch": 0.6206666666666667,
666
+ "grad_norm": 0.2360672801733017,
667
+ "kl": 0.12881951583059212,
668
+ "learning_rate": 1.1310926255482204e-06,
669
+ "loss": 0.0052,
670
+ "reward": 0.5070175553622999,
671
+ "reward_std": 0.38596598882424205,
672
+ "rewards/accuracy_reward": 0.5070175553622999,
673
+ "rewards/format_reward": 0.0,
674
+ "step": 245
675
+ },
676
+ {
677
+ "completion_length": 379.06843085038037,
678
+ "epoch": 0.6333333333333333,
679
+ "grad_norm": 0.41622936725616455,
680
+ "kl": 0.4508557771381579,
681
+ "learning_rate": 1.0669620789905688e-06,
682
+ "loss": 0.018,
683
+ "reward": 0.5122807151392886,
684
+ "reward_std": 0.35713848534383275,
685
+ "rewards/accuracy_reward": 0.5122807151392886,
686
+ "rewards/format_reward": 0.0,
687
+ "step": 250
688
+ },
689
+ {
690
+ "completion_length": 379.2842171116879,
691
+ "epoch": 0.646,
692
+ "grad_norm": 2.963742256164551,
693
+ "kl": 1.111646792763158,
694
+ "learning_rate": 1.0036840196969795e-06,
695
+ "loss": 0.0445,
696
+ "reward": 0.5614035189151764,
697
+ "reward_std": 0.33363121528374523,
698
+ "rewards/accuracy_reward": 0.5614035189151764,
699
+ "rewards/format_reward": 0.0,
700
+ "step": 255
701
+ },
702
+ {
703
+ "completion_length": 390.0175530684622,
704
+ "epoch": 0.6586666666666666,
705
+ "grad_norm": 1.9537420272827148,
706
+ "kl": 1.1658845600328946,
707
+ "learning_rate": 9.413830181427508e-07,
708
+ "loss": 0.0466,
709
+ "reward": 0.5263158009240502,
710
+ "reward_std": 0.3237152021182211,
711
+ "rewards/accuracy_reward": 0.5263158009240502,
712
+ "rewards/format_reward": 0.0,
713
+ "step": 260
714
+ },
715
+ {
716
+ "completion_length": 406.68421936035156,
717
+ "epoch": 0.6713333333333333,
718
+ "grad_norm": 0.1643250286579132,
719
+ "kl": 9.794161184210527,
720
+ "learning_rate": 8.801817213474331e-07,
721
+ "loss": 0.3924,
722
+ "reward": 0.44210527413769773,
723
+ "reward_std": 0.3688186996861508,
724
+ "rewards/accuracy_reward": 0.44210527413769773,
725
+ "rewards/format_reward": 0.0,
726
+ "step": 265
727
+ },
728
+ {
729
+ "completion_length": 394.60878087093954,
730
+ "epoch": 0.684,
731
+ "grad_norm": 0.5662396550178528,
732
+ "kl": 0.29067961040296053,
733
+ "learning_rate": 8.202006114294044e-07,
734
+ "loss": 0.0116,
735
+ "reward": 0.47368422009442984,
736
+ "reward_std": 0.37373340569044416,
737
+ "rewards/accuracy_reward": 0.47368422009442984,
738
+ "rewards/format_reward": 0.0,
739
+ "step": 270
740
+ },
741
+ {
742
+ "completion_length": 383.15790437397203,
743
+ "epoch": 0.6966666666666667,
744
+ "grad_norm": 0.36152008175849915,
745
+ "kl": 0.8754098992598685,
746
+ "learning_rate": 7.615577684223272e-07,
747
+ "loss": 0.035,
748
+ "reward": 0.5210526431861676,
749
+ "reward_std": 0.39000940040538185,
750
+ "rewards/accuracy_reward": 0.5210526431861676,
751
+ "rewards/format_reward": 0.0,
752
+ "step": 275
753
+ },
754
+ {
755
+ "completion_length": 396.80176439787215,
756
+ "epoch": 0.7093333333333334,
757
+ "grad_norm": 1.2584236860275269,
758
+ "kl": 1.3499331825657894,
759
+ "learning_rate": 7.043686378203864e-07,
760
+ "loss": 0.054,
761
+ "reward": 0.4596491366624832,
762
+ "reward_std": 0.37697656687937287,
763
+ "rewards/accuracy_reward": 0.4596491366624832,
764
+ "rewards/format_reward": 0.0,
765
+ "step": 280
766
+ },
767
+ {
768
+ "completion_length": 408.31755178351153,
769
+ "epoch": 0.722,
770
+ "grad_norm": 1.6444029808044434,
771
+ "kl": 0.37659269634046055,
772
+ "learning_rate": 6.487458033099425e-07,
773
+ "loss": 0.0151,
774
+ "reward": 0.43333334467912976,
775
+ "reward_std": 0.41270798601602254,
776
+ "rewards/accuracy_reward": 0.43333334467912976,
777
+ "rewards/format_reward": 0.0,
778
+ "step": 285
779
+ },
780
+ {
781
+ "completion_length": 396.7526412160773,
782
+ "epoch": 0.7346666666666667,
783
+ "grad_norm": 0.24537613987922668,
784
+ "kl": 0.7064022666529606,
785
+ "learning_rate": 5.947987651349942e-07,
786
+ "loss": 0.0283,
787
+ "reward": 0.5245614156911248,
788
+ "reward_std": 0.39676410242130883,
789
+ "rewards/accuracy_reward": 0.5245614156911248,
790
+ "rewards/format_reward": 0.0,
791
+ "step": 290
792
+ },
793
+ {
794
+ "completion_length": 396.04386933979237,
795
+ "epoch": 0.7473333333333333,
796
+ "grad_norm": 1.1248526573181152,
797
+ "kl": 2.2961811266447367,
798
+ "learning_rate": 5.426337245327703e-07,
799
+ "loss": 0.0919,
800
+ "reward": 0.5070175574014061,
801
+ "reward_std": 0.3869973038372241,
802
+ "rewards/accuracy_reward": 0.5070175574014061,
803
+ "rewards/format_reward": 0.0,
804
+ "step": 295
805
+ },
806
+ {
807
+ "completion_length": 393.7561492919922,
808
+ "epoch": 0.76,
809
+ "grad_norm": 5.84006929397583,
810
+ "kl": 5.933592465049342,
811
+ "learning_rate": 4.923533746638108e-07,
812
+ "loss": 0.2375,
813
+ "reward": 0.48245614986670643,
814
+ "reward_std": 0.40506037599162054,
815
+ "rewards/accuracy_reward": 0.48245614986670643,
816
+ "rewards/format_reward": 0.0,
817
+ "step": 300
818
+ },
819
+ {
820
+ "epoch": 0.76,
821
+ "eval_completion_length": 393.75374295043946,
822
+ "eval_kl": 3.580558123779297,
823
+ "eval_loss": 0.14329032599925995,
824
+ "eval_reward": 0.41980000983178617,
825
+ "eval_reward_std": 0.3639850652396679,
826
+ "eval_rewards/accuracy_reward": 0.41980000983178617,
827
+ "eval_rewards/format_reward": 0.0,
828
+ "eval_runtime": 47686.4832,
829
+ "eval_samples_per_second": 0.105,
830
+ "eval_steps_per_second": 0.017,
831
+ "step": 300
832
+ },
833
+ {
834
+ "completion_length": 406.72983366313736,
835
+ "epoch": 0.7726666666666666,
836
+ "grad_norm": 0.570837140083313,
837
+ "kl": 2.009347373560855,
838
+ "learning_rate": 4.440566984481256e-07,
839
+ "loss": 0.0804,
840
+ "reward": 0.42280702669369546,
841
+ "reward_std": 0.4078474631434993,
842
+ "rewards/accuracy_reward": 0.42280702669369546,
843
+ "rewards/format_reward": 0.0,
844
+ "step": 305
845
+ },
846
+ {
847
+ "completion_length": 387.854396458676,
848
+ "epoch": 0.7853333333333333,
849
+ "grad_norm": 0.4837806224822998,
850
+ "kl": 0.8569181743421053,
851
+ "learning_rate": 3.978387737053994e-07,
852
+ "loss": 0.0343,
853
+ "reward": 0.5350877289709292,
854
+ "reward_std": 0.3191217996572193,
855
+ "rewards/accuracy_reward": 0.5350877289709292,
856
+ "rewards/format_reward": 0.0,
857
+ "step": 310
858
+ },
859
+ {
860
+ "completion_length": 391.2175537109375,
861
+ "epoch": 0.798,
862
+ "grad_norm": 1.2316937446594238,
863
+ "kl": 1.243909333881579,
864
+ "learning_rate": 3.5379058598286167e-07,
865
+ "loss": 0.0497,
866
+ "reward": 0.4842105376093011,
867
+ "reward_std": 0.3719776351200907,
868
+ "rewards/accuracy_reward": 0.4842105376093011,
869
+ "rewards/format_reward": 0.0,
870
+ "step": 315
871
+ },
872
+ {
873
+ "completion_length": 404.43509698165093,
874
+ "epoch": 0.8106666666666666,
875
+ "grad_norm": 1.2691428661346436,
876
+ "kl": 1.967847964638158,
877
+ "learning_rate": 3.119988494392894e-07,
878
+ "loss": 0.0787,
879
+ "reward": 0.47543860705275287,
880
+ "reward_std": 0.40146460689996416,
881
+ "rewards/accuracy_reward": 0.47543860705275287,
882
+ "rewards/format_reward": 0.0,
883
+ "step": 320
884
+ },
885
+ {
886
+ "completion_length": 385.6350979453639,
887
+ "epoch": 0.8233333333333334,
888
+ "grad_norm": 2.1663596630096436,
889
+ "kl": 1.7478567023026317,
890
+ "learning_rate": 2.725458361377465e-07,
891
+ "loss": 0.0699,
892
+ "reward": 0.5333333443654211,
893
+ "reward_std": 0.3384051385678743,
894
+ "rewards/accuracy_reward": 0.5333333443654211,
895
+ "rewards/format_reward": 0.0,
896
+ "step": 325
897
+ },
898
+ {
899
+ "completion_length": 389.51755499588813,
900
+ "epoch": 0.836,
901
+ "grad_norm": 0.9927846789360046,
902
+ "kl": 2.0717015316611844,
903
+ "learning_rate": 2.3550921408312737e-07,
904
+ "loss": 0.0829,
905
+ "reward": 0.5052631704430831,
906
+ "reward_std": 0.386816783641514,
907
+ "rewards/accuracy_reward": 0.5052631704430831,
908
+ "rewards/format_reward": 0.0,
909
+ "step": 330
910
+ },
911
+ {
912
+ "completion_length": 380.80000770970395,
913
+ "epoch": 0.8486666666666667,
914
+ "grad_norm": 1.9131776094436646,
915
+ "kl": 1.4728098016036184,
916
+ "learning_rate": 2.0096189432334195e-07,
917
+ "loss": 0.059,
918
+ "reward": 0.46491229016529884,
919
+ "reward_std": 0.3830212574256094,
920
+ "rewards/accuracy_reward": 0.46491229016529884,
921
+ "rewards/format_reward": 0.0,
922
+ "step": 335
923
+ },
924
+ {
925
+ "completion_length": 384.0947445518092,
926
+ "epoch": 0.8613333333333333,
927
+ "grad_norm": 0.5461324453353882,
928
+ "kl": 1.2412668328536185,
929
+ "learning_rate": 1.6897188741514286e-07,
930
+ "loss": 0.0497,
931
+ "reward": 0.46842106282711027,
932
+ "reward_std": 0.372008940106944,
933
+ "rewards/accuracy_reward": 0.46842106282711027,
934
+ "rewards/format_reward": 0.0,
935
+ "step": 340
936
+ },
937
+ {
938
+ "completion_length": 395.47720272666527,
939
+ "epoch": 0.874,
940
+ "grad_norm": 0.5957249999046326,
941
+ "kl": 1.3121890419407896,
942
+ "learning_rate": 1.396021695371582e-07,
943
+ "loss": 0.0525,
944
+ "reward": 0.4543859761012228,
945
+ "reward_std": 0.35364981732870404,
946
+ "rewards/accuracy_reward": 0.4543859761012228,
947
+ "rewards/format_reward": 0.0,
948
+ "step": 345
949
+ },
950
+ {
951
+ "completion_length": 388.5894830001028,
952
+ "epoch": 0.8866666666666667,
953
+ "grad_norm": 0.7833815813064575,
954
+ "kl": 1.2672890111019737,
955
+ "learning_rate": 1.1291055851370623e-07,
956
+ "loss": 0.0507,
957
+ "reward": 0.46491229063586187,
958
+ "reward_std": 0.3626813524647763,
959
+ "rewards/accuracy_reward": 0.46491229063586187,
960
+ "rewards/format_reward": 0.0,
961
+ "step": 350
962
+ },
963
+ {
964
+ "completion_length": 393.6350974635074,
965
+ "epoch": 0.8993333333333333,
966
+ "grad_norm": 1.0711956024169922,
967
+ "kl": 1.032947419819079,
968
+ "learning_rate": 8.894959999345015e-08,
969
+ "loss": 0.0413,
970
+ "reward": 0.4210526403627898,
971
+ "reward_std": 0.3503103620127628,
972
+ "rewards/accuracy_reward": 0.4210526403627898,
973
+ "rewards/format_reward": 0.0,
974
+ "step": 355
975
+ },
976
+ {
977
+ "completion_length": 389.8333436664782,
978
+ "epoch": 0.912,
979
+ "grad_norm": 0.6254836320877075,
980
+ "kl": 0.9737092670641447,
981
+ "learning_rate": 6.776646400696212e-08,
982
+ "loss": 0.039,
983
+ "reward": 0.4859649231559352,
984
+ "reward_std": 0.38237022004629434,
985
+ "rewards/accuracy_reward": 0.4859649231559352,
986
+ "rewards/format_reward": 0.0,
987
+ "step": 360
988
+ },
989
+ {
990
+ "completion_length": 389.48948348195927,
991
+ "epoch": 0.9246666666666666,
992
+ "grad_norm": 1.6106293201446533,
993
+ "kl": 0.9006559673108553,
994
+ "learning_rate": 4.940285210684375e-08,
995
+ "loss": 0.036,
996
+ "reward": 0.49122808324663264,
997
+ "reward_std": 0.3813075975367897,
998
+ "rewards/accuracy_reward": 0.49122808324663264,
999
+ "rewards/format_reward": 0.0,
1000
+ "step": 365
1001
+ },
1002
+ {
1003
+ "completion_length": 387.6245711477179,
1004
+ "epoch": 0.9373333333333334,
1005
+ "grad_norm": 2.270439863204956,
1006
+ "kl": 1.5312891909950659,
1007
+ "learning_rate": 3.389491527319999e-08,
1008
+ "loss": 0.0613,
1009
+ "reward": 0.4543859757875141,
1010
+ "reward_std": 0.3992635683009499,
1011
+ "rewards/accuracy_reward": 0.4543859757875141,
1012
+ "rewards/format_reward": 0.0,
1013
+ "step": 370
1014
+ },
1015
+ {
1016
+ "completion_length": 398.4315892269737,
1017
+ "epoch": 0.95,
1018
+ "grad_norm": 2.971569061279297,
1019
+ "kl": 1.466099146792763,
1020
+ "learning_rate": 2.127318274608381e-08,
1021
+ "loss": 0.0586,
1022
+ "reward": 0.4473684310913086,
1023
+ "reward_std": 0.30884474672769247,
1024
+ "rewards/accuracy_reward": 0.4473684310913086,
1025
+ "rewards/format_reward": 0.0,
1026
+ "step": 375
1027
+ },
1028
+ {
1029
+ "completion_length": 382.3105351498252,
1030
+ "epoch": 0.9626666666666667,
1031
+ "grad_norm": 0.4336649775505066,
1032
+ "kl": 1.0901534231085526,
1033
+ "learning_rate": 1.1562501925013125e-08,
1034
+ "loss": 0.0436,
1035
+ "reward": 0.5385965030444296,
1036
+ "reward_std": 0.3790620725405844,
1037
+ "rewards/accuracy_reward": 0.5385965030444296,
1038
+ "rewards/format_reward": 0.0,
1039
+ "step": 380
1040
+ },
1041
+ {
1042
+ "completion_length": 382.67018448679073,
1043
+ "epoch": 0.9753333333333334,
1044
+ "grad_norm": 2.1975314617156982,
1045
+ "kl": 1.1284366005345394,
1046
+ "learning_rate": 4.781989453874814e-09,
1047
+ "loss": 0.0452,
1048
+ "reward": 0.5087719407520797,
1049
+ "reward_std": 0.3483945708525808,
1050
+ "rewards/accuracy_reward": 0.5087719407520797,
1051
+ "rewards/format_reward": 0.0,
1052
+ "step": 385
1053
+ },
1054
+ {
1055
+ "completion_length": 395.0982547157689,
1056
+ "epoch": 0.988,
1057
+ "grad_norm": 1.3517661094665527,
1058
+ "kl": 1.2858867444490132,
1059
+ "learning_rate": 9.44993587509657e-10,
1060
+ "loss": 0.0514,
1061
+ "reward": 0.5070175545780282,
1062
+ "reward_std": 0.4019014430673499,
1063
+ "rewards/accuracy_reward": 0.5070175545780282,
1064
+ "rewards/format_reward": 0.0,
1065
+ "step": 390
1066
+ },
1067
+ {
1068
+ "completion_length": 403.1096580906918,
1069
+ "epoch": 0.9981333333333333,
1070
+ "kl": 2.4145796926398027,
1071
+ "reward": 0.42324562468811083,
1072
+ "reward_std": 0.32168745288723394,
1073
+ "rewards/accuracy_reward": 0.42324562468811083,
1074
+ "rewards/format_reward": 0.0,
1075
+ "step": 394,
1076
+ "total_flos": 0.0,
1077
+ "train_loss": 0.027036830155200475,
1078
+ "train_runtime": 281082.0852,
1079
+ "train_samples_per_second": 0.027,
1080
+ "train_steps_per_second": 0.001
1081
+ }
1082
+ ],
1083
+ "logging_steps": 5,
1084
+ "max_steps": 394,
1085
+ "num_input_tokens_seen": 0,
1086
+ "num_train_epochs": 1,
1087
+ "save_steps": 500,
1088
+ "stateful_callbacks": {
1089
+ "TrainerControl": {
1090
+ "args": {
1091
+ "should_epoch_stop": false,
1092
+ "should_evaluate": false,
1093
+ "should_log": false,
1094
+ "should_save": false,
1095
+ "should_training_stop": false
1096
+ },
1097
+ "attributes": {}
1098
+ }
1099
+ },
1100
+ "total_flos": 0.0,
1101
+ "train_batch_size": 2,
1102
+ "trial_name": null,
1103
+ "trial_params": null
1104
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f942f0096b55244d30974e5a2a781aa646e662406e9dee451d546238cbf9b6c
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff