--- license: other library_name: transformers base_model: - Qwen/Qwen2.5-3B datasets: - BAAI/Infinity-Instruct license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-3B/blob/main/LICENSE pipeline_tag: text-generation model-index: - name: Qwen2.5-3B-Infinity-Instruct-0625 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 35.58 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 26.91 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 2.04 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 8.13 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.43 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 name: Open LLM Leaderboard --- # Model Card for Model ID ## Model Details This is the model fine-tuned in [this blog](https://huggingface.co/blog/jlzhou/distributed-sft-with-trl-and-deepspeed-part2). This model is fine-tuned on [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B), with [BAAI/Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct) dataset (subset 0625). You can find more details in the blog post. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "jlzhou/Qwen2.5-3B-Infinity-Instruct-0625" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/jlzhou__Qwen2.5-3B-Infinity-Instruct-0625-details) | Metric |Value| |-------------------|----:| |Avg. |16.61| |IFEval (0-Shot) |35.58| |BBH (3-Shot) |26.91| |MATH Lvl 5 (4-Shot)| 2.04| |GPQA (0-shot) | 2.57| |MuSR (0-shot) | 8.13| |MMLU-PRO (5-shot) |24.43|