Upload food embeddings model
Browse files- README.md +41 -41
- model.safetensors +1 -1
README.md
CHANGED
@@ -4,35 +4,35 @@ tags:
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
-
- dataset_size:
|
8 |
- loss:ContrastiveLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
-
- source_sentence:
|
12 |
sentences:
|
13 |
-
-
|
14 |
-
-
|
15 |
-
-
|
16 |
-
- source_sentence:
|
17 |
sentences:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
- source_sentence:
|
22 |
sentences:
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
- source_sentence:
|
27 |
sentences:
|
28 |
-
-
|
29 |
-
-
|
30 |
-
-
|
31 |
-
- source_sentence:
|
32 |
sentences:
|
33 |
-
-
|
34 |
-
-
|
35 |
-
-
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
@@ -49,10 +49,10 @@ model-index:
|
|
49 |
type: validation
|
50 |
metrics:
|
51 |
- type: pearson_cosine
|
52 |
-
value: 0.
|
53 |
name: Pearson Cosine
|
54 |
- type: spearman_cosine
|
55 |
-
value: 0.
|
56 |
name: Spearman Cosine
|
57 |
---
|
58 |
|
@@ -106,9 +106,9 @@ from sentence_transformers import SentenceTransformer
|
|
106 |
model = SentenceTransformer("jonny9f/food_embeddings4")
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
-
'
|
110 |
-
'
|
111 |
-
'
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
@@ -153,10 +153,10 @@ You can finetune this model on your own dataset.
|
|
153 |
* Dataset: `validation`
|
154 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
155 |
|
156 |
-
| Metric | Value
|
157 |
-
|
158 |
-
| pearson_cosine | 0.
|
159 |
-
| **spearman_cosine** | **0.
|
160 |
|
161 |
<!--
|
162 |
## Bias, Risks and Limitations
|
@@ -177,19 +177,19 @@ You can finetune this model on your own dataset.
|
|
177 |
#### Unnamed Dataset
|
178 |
|
179 |
|
180 |
-
* Size: 4,
|
181 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
182 |
* Approximate statistics based on the first 1000 samples:
|
183 |
-
| | sentence_0
|
184 |
-
|
185 |
-
| type | string
|
186 |
-
| details | <ul><li>min: 3 tokens</li><li>mean:
|
187 |
* Samples:
|
188 |
-
| sentence_0
|
189 |
-
|
190 |
-
| <code>
|
191 |
-
| <code>
|
192 |
-
| <code>
|
193 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
194 |
```json
|
195 |
{
|
@@ -331,7 +331,7 @@ You can finetune this model on your own dataset.
|
|
331 |
### Training Logs
|
332 |
| Epoch | Step | validation_spearman_cosine |
|
333 |
|:-----:|:----:|:--------------------------:|
|
334 |
-
| 1.0 |
|
335 |
|
336 |
|
337 |
### Framework Versions
|
|
|
4 |
- sentence-similarity
|
5 |
- feature-extraction
|
6 |
- generated_from_trainer
|
7 |
+
- dataset_size:4256
|
8 |
- loss:ContrastiveLoss
|
9 |
base_model: sentence-transformers/all-mpnet-base-v2
|
10 |
widget:
|
11 |
+
- source_sentence: So Delicious Key Lime Yogurt
|
12 |
sentences:
|
13 |
+
- Squash, yellow raw
|
14 |
+
- Babyfood, mixed fruit yogurt
|
15 |
+
- Beef, rib eye steak/roast bone-in lip-on raw
|
16 |
+
- source_sentence: Cocoa Bumpers Cereal, Quaker Mother's
|
17 |
sentences:
|
18 |
+
- Lovebird Cereal Honey Box
|
19 |
+
- Ham, canned roasted
|
20 |
+
- Chicken, light meat with skin, cooked stewed
|
21 |
+
- source_sentence: Broadbeans, raw immature seeds
|
22 |
sentences:
|
23 |
+
- Peas, canned rinsed
|
24 |
+
- Promin Minestrone Soup
|
25 |
+
- Rice, brown long-grain cooked
|
26 |
+
- source_sentence: Chicken, dark meat thigh meat and skin, added solution cooked braised
|
27 |
sentences:
|
28 |
+
- Moose, raw
|
29 |
+
- Chickpeas, cooked with salt
|
30 |
+
- Sausage, pork turkey and beef reduced sodium
|
31 |
+
- source_sentence: Shortening, soy and cottonseed for pastries
|
32 |
sentences:
|
33 |
+
- Soup, chicken noodle reduced sodium
|
34 |
+
- Sea lion kidney, Steller (Alaska Native)
|
35 |
+
- Salad, McDonald's side
|
36 |
pipeline_tag: sentence-similarity
|
37 |
library_name: sentence-transformers
|
38 |
metrics:
|
|
|
49 |
type: validation
|
50 |
metrics:
|
51 |
- type: pearson_cosine
|
52 |
+
value: 0.8269809784218102
|
53 |
name: Pearson Cosine
|
54 |
- type: spearman_cosine
|
55 |
+
value: 0.845955787172452
|
56 |
name: Spearman Cosine
|
57 |
---
|
58 |
|
|
|
106 |
model = SentenceTransformer("jonny9f/food_embeddings4")
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
+
'Shortening, soy and cottonseed for pastries',
|
110 |
+
'Sea lion kidney, Steller (Alaska Native)',
|
111 |
+
'Soup, chicken noodle reduced sodium',
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
|
|
153 |
* Dataset: `validation`
|
154 |
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
155 |
|
156 |
+
| Metric | Value |
|
157 |
+
|:--------------------|:----------|
|
158 |
+
| pearson_cosine | 0.827 |
|
159 |
+
| **spearman_cosine** | **0.846** |
|
160 |
|
161 |
<!--
|
162 |
## Bias, Risks and Limitations
|
|
|
177 |
#### Unnamed Dataset
|
178 |
|
179 |
|
180 |
+
* Size: 4,256 training samples
|
181 |
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
182 |
* Approximate statistics based on the first 1000 samples:
|
183 |
+
| | sentence_0 | sentence_1 | label |
|
184 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
|
185 |
+
| type | string | string | float |
|
186 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.91 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.96 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.39</li><li>max: 0.85</li></ul> |
|
187 |
* Samples:
|
188 |
+
| sentence_0 | sentence_1 | label |
|
189 |
+
|:---------------------------------------------|:------------------------------------------------|:--------------------------------|
|
190 |
+
| <code>Fava Beans, cooked without salt</code> | <code>Red Kidney Beans, cooked with salt</code> | <code>0.85</code> |
|
191 |
+
| <code>Spaghetti squash, raw</code> | <code>Mushrooms, white cooked</code> | <code>0.5719985961914062</code> |
|
192 |
+
| <code>Chicken, back with skin roasted</code> | <code>Beef rib, roasted</code> | <code>0.0</code> |
|
193 |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
|
194 |
```json
|
195 |
{
|
|
|
331 |
### Training Logs
|
332 |
| Epoch | Step | validation_spearman_cosine |
|
333 |
|:-----:|:----:|:--------------------------:|
|
334 |
+
| 1.0 | 133 | 0.8460 |
|
335 |
|
336 |
|
337 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44512fb0fe9566fddc194c4ecd20617070852653233eccc58ae88f6fc48e2c73
|
3 |
size 437967672
|