jonny9f commited on
Commit
09df92d
·
verified ·
1 Parent(s): 7e2325b

Upload food embeddings model

Browse files
Files changed (2) hide show
  1. README.md +41 -41
  2. model.safetensors +1 -1
README.md CHANGED
@@ -4,35 +4,35 @@ tags:
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
- - dataset_size:4278
8
  - loss:ContrastiveLoss
9
  base_model: sentence-transformers/all-mpnet-base-v2
10
  widget:
11
- - source_sentence: Chicken thigh, meat and skin, cooked fried
12
  sentences:
13
- - Pork loin chops, center loin bone-in cooked braised
14
- - Nature’S Path Homestyle Waffles
15
- - Turkey, liver raw
16
- - source_sentence: Lamb, New Zealand hind-shank lean and fat raw
17
  sentences:
18
- - Cabbage, pak-choi cooked with salt
19
- - Lamb, New Zealand, frozen, mixed cuts, raw
20
- - gitwero, banana/potato + vegetable
21
- - source_sentence: Lamb, New Zealand chump boneless lean raw
22
  sentences:
23
- - Mushrooms, white stir-fried
24
- - Mooala Organic Chocolate Bananamilk
25
- - Elk, raw game meat
26
- - source_sentence: Cereal, mixed with applesauce and bananas, junior fortified
27
  sentences:
28
- - Beef brisket, lean and fat braised
29
- - Beef, grilled boneless top loin steak, no fat
30
- - Beef top loin, cooked grilled
31
- - source_sentence: Beef, cooked lean cuts
32
  sentences:
33
- - Chicken, separable fat, raw
34
- - Burger King, double cheeseburger
35
- - Beef, chuck under blade pot roast boneless cooked braised
36
  pipeline_tag: sentence-similarity
37
  library_name: sentence-transformers
38
  metrics:
@@ -49,10 +49,10 @@ model-index:
49
  type: validation
50
  metrics:
51
  - type: pearson_cosine
52
- value: 0.7954090460164015
53
  name: Pearson Cosine
54
  - type: spearman_cosine
55
- value: 0.8307590405531435
56
  name: Spearman Cosine
57
  ---
58
 
@@ -106,9 +106,9 @@ from sentence_transformers import SentenceTransformer
106
  model = SentenceTransformer("jonny9f/food_embeddings4")
107
  # Run inference
108
  sentences = [
109
- 'Beef, cooked lean cuts',
110
- 'Beef, chuck under blade pot roast boneless cooked braised',
111
- 'Burger King, double cheeseburger',
112
  ]
113
  embeddings = model.encode(sentences)
114
  print(embeddings.shape)
@@ -153,10 +153,10 @@ You can finetune this model on your own dataset.
153
  * Dataset: `validation`
154
  * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
155
 
156
- | Metric | Value |
157
- |:--------------------|:-----------|
158
- | pearson_cosine | 0.7954 |
159
- | **spearman_cosine** | **0.8308** |
160
 
161
  <!--
162
  ## Bias, Risks and Limitations
@@ -177,19 +177,19 @@ You can finetune this model on your own dataset.
177
  #### Unnamed Dataset
178
 
179
 
180
- * Size: 4,278 training samples
181
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
182
  * Approximate statistics based on the first 1000 samples:
183
- | | sentence_0 | sentence_1 | label |
184
- |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
185
- | type | string | string | float |
186
- | details | <ul><li>min: 3 tokens</li><li>mean: 10.01 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.95 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.37</li><li>max: 0.85</li></ul> |
187
  * Samples:
188
- | sentence_0 | sentence_1 | label |
189
- |:---------------------------------------------------------------------|:-----------------------------------------------------------------|:--------------------------------|
190
- | <code>Cocoa Butter Oil</code> | <code>Lamb, tenderloin fast fried</code> | <code>0.0</code> |
191
- | <code>Shrimp, cooked breaded fried</code> | <code>Shrimp, breaded and fried (family style restaurant)</code> | <code>0.0</code> |
192
- | <code>Pineapple Juice, canned unsweetened with added vitamins</code> | <code>cranberry-apple juice drink, bottled</code> | <code>0.7392904043197631</code> |
193
  * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
194
  ```json
195
  {
@@ -331,7 +331,7 @@ You can finetune this model on your own dataset.
331
  ### Training Logs
332
  | Epoch | Step | validation_spearman_cosine |
333
  |:-----:|:----:|:--------------------------:|
334
- | 1.0 | 134 | 0.8308 |
335
 
336
 
337
  ### Framework Versions
 
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
+ - dataset_size:4256
8
  - loss:ContrastiveLoss
9
  base_model: sentence-transformers/all-mpnet-base-v2
10
  widget:
11
+ - source_sentence: So Delicious Key Lime Yogurt
12
  sentences:
13
+ - Squash, yellow raw
14
+ - Babyfood, mixed fruit yogurt
15
+ - Beef, rib eye steak/roast bone-in lip-on raw
16
+ - source_sentence: Cocoa Bumpers Cereal, Quaker Mother's
17
  sentences:
18
+ - Lovebird Cereal Honey Box
19
+ - Ham, canned roasted
20
+ - Chicken, light meat with skin, cooked stewed
21
+ - source_sentence: Broadbeans, raw immature seeds
22
  sentences:
23
+ - Peas, canned rinsed
24
+ - Promin Minestrone Soup
25
+ - Rice, brown long-grain cooked
26
+ - source_sentence: Chicken, dark meat thigh meat and skin, added solution cooked braised
27
  sentences:
28
+ - Moose, raw
29
+ - Chickpeas, cooked with salt
30
+ - Sausage, pork turkey and beef reduced sodium
31
+ - source_sentence: Shortening, soy and cottonseed for pastries
32
  sentences:
33
+ - Soup, chicken noodle reduced sodium
34
+ - Sea lion kidney, Steller (Alaska Native)
35
+ - Salad, McDonald's side
36
  pipeline_tag: sentence-similarity
37
  library_name: sentence-transformers
38
  metrics:
 
49
  type: validation
50
  metrics:
51
  - type: pearson_cosine
52
+ value: 0.8269809784218102
53
  name: Pearson Cosine
54
  - type: spearman_cosine
55
+ value: 0.845955787172452
56
  name: Spearman Cosine
57
  ---
58
 
 
106
  model = SentenceTransformer("jonny9f/food_embeddings4")
107
  # Run inference
108
  sentences = [
109
+ 'Shortening, soy and cottonseed for pastries',
110
+ 'Sea lion kidney, Steller (Alaska Native)',
111
+ 'Soup, chicken noodle reduced sodium',
112
  ]
113
  embeddings = model.encode(sentences)
114
  print(embeddings.shape)
 
153
  * Dataset: `validation`
154
  * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
155
 
156
+ | Metric | Value |
157
+ |:--------------------|:----------|
158
+ | pearson_cosine | 0.827 |
159
+ | **spearman_cosine** | **0.846** |
160
 
161
  <!--
162
  ## Bias, Risks and Limitations
 
177
  #### Unnamed Dataset
178
 
179
 
180
+ * Size: 4,256 training samples
181
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
182
  * Approximate statistics based on the first 1000 samples:
183
+ | | sentence_0 | sentence_1 | label |
184
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
185
+ | type | string | string | float |
186
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.91 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.96 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.39</li><li>max: 0.85</li></ul> |
187
  * Samples:
188
+ | sentence_0 | sentence_1 | label |
189
+ |:---------------------------------------------|:------------------------------------------------|:--------------------------------|
190
+ | <code>Fava Beans, cooked without salt</code> | <code>Red Kidney Beans, cooked with salt</code> | <code>0.85</code> |
191
+ | <code>Spaghetti squash, raw</code> | <code>Mushrooms, white cooked</code> | <code>0.5719985961914062</code> |
192
+ | <code>Chicken, back with skin roasted</code> | <code>Beef rib, roasted</code> | <code>0.0</code> |
193
  * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
194
  ```json
195
  {
 
331
  ### Training Logs
332
  | Epoch | Step | validation_spearman_cosine |
333
  |:-----:|:----:|:--------------------------:|
334
+ | 1.0 | 133 | 0.8460 |
335
 
336
 
337
  ### Framework Versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7900958fe9c3d48c5f94d296f38e075f68e684247f4cd7686bfec430c18c15ed
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44512fb0fe9566fddc194c4ecd20617070852653233eccc58ae88f6fc48e2c73
3
  size 437967672