---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4256
- loss:ContrastiveLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: So Delicious Key Lime Yogurt
sentences:
- Squash, yellow raw
- Babyfood, mixed fruit yogurt
- Beef, rib eye steak/roast bone-in lip-on raw
- source_sentence: Cocoa Bumpers Cereal, Quaker Mother's
sentences:
- Lovebird Cereal Honey Box
- Ham, canned roasted
- Chicken, light meat with skin, cooked stewed
- source_sentence: Broadbeans, raw immature seeds
sentences:
- Peas, canned rinsed
- Promin Minestrone Soup
- Rice, brown long-grain cooked
- source_sentence: Chicken, dark meat thigh meat and skin, added solution cooked braised
sentences:
- Moose, raw
- Chickpeas, cooked with salt
- Sausage, pork turkey and beef reduced sodium
- source_sentence: Shortening, soy and cottonseed for pastries
sentences:
- Soup, chicken noodle reduced sodium
- Sea lion kidney, Steller (Alaska Native)
- Salad, McDonald's side
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: validation
type: validation
metrics:
- type: pearson_cosine
value: 0.8269809784218102
name: Pearson Cosine
- type: spearman_cosine
value: 0.845955787172452
name: Spearman Cosine
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jonny9f/food_embeddings4")
# Run inference
sentences = [
'Shortening, soy and cottonseed for pastries',
'Sea lion kidney, Steller (Alaska Native)',
'Soup, chicken noodle reduced sodium',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `validation`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:----------|
| pearson_cosine | 0.827 |
| **spearman_cosine** | **0.846** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,256 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details |
Fava Beans, cooked without salt
| Red Kidney Beans, cooked with salt
| 0.85
|
| Spaghetti squash, raw
| Mushrooms, white cooked
| 0.5719985961914062
|
| Chicken, back with skin roasted
| Beef rib, roasted
| 0.0
|
* Loss: [ContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters