File size: 1,899 Bytes
4423959
 
961454f
 
 
 
 
 
 
 
4423959
1ba8af1
4423959
961454f
 
1ba8af1
961454f
4423959
961454f
4423959
961454f
4423959
 
961454f
4423959
961454f
4423959
961454f
4423959
961454f
4423959
961454f
4423959
961454f
 
 
4423959
961454f
 
 
 
 
 
 
4423959
961454f
 
 
 
 
 
4423959
961454f
 
 
 
 
 
 
 
 
 
 
4423959
961454f
4423959
961454f
 
4423959
961454f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
tags:
- chocolatine
license: mit
datasets:
- jpacifico/french-orca-dpo-pairs-revised
language:
- fr
- en
---
### Chocolatine-2-14B

DPO fine-tuning experiment of [sometimesanotion/Lamarck-14B-v0.7](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7) (14B params)  
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.  
Training in French also improves the model in English  
*Long-context Support up to 128K tokens and can generate up to 8K tokens.*  

### OpenLLM Leaderboard

coming soon  


### MT-Bench

coming soon

### Usage

You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb) 

You can also run Chocolatine using the following code:

```python
import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])
```

### Limitations

The Chocolatine model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.  
It does not have any moderation mechanism.  

- **Developed by:** Jonathan Pacifico, 2025  
- **Model type:** LLM 
- **Language(s) (NLP):** French, English  
- **License:** MIT