--- language: - fr - en license: apache-2.0 library_name: transformers tags: - chocolatine datasets: - jpacifico/french-orca-dpo-pairs-revised pipeline_tag: text-generation --- ### Chocolatine-32B-Instruct-DPO-v1.2 DPO fine-tuned of [rombodawg/Rombos-LLM-V2.5-Qwen-32b](https://huggingface.co/rombodawg/Rombos-LLM-V2.5-Qwen-32b) based on [Qwen/Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset. Training in French also improves the model, including in English, surpassing the performance of its base model. Long-context Support up to 128K tokens and can generate up to 8K tokens. ### OpenLLM Leaderboard Coming soon. ### OpenLLM French leaderboard Coming soon. ### Usage You can run Chocolatine using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ### Limitations The Chocolatine model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanism. - **Developed by:** Jonathan Pacifico, 2024 - **Model type:** LLM - **Language(s) (NLP):** French, English - **License:** Apache 2.0 Made with ❤️ in France