--- license: mit base_model: - deepseek-ai/DeepSeek-R1-Distill-Llama-70B library_name: transformers --- The [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/perplexity-ai/r1-1776-distill-llama-70b) model quantized to fp8. # quantization using llm_compressor ```python from transformers import AutoTokenizer, AutoModelForCausalLM from llmcompressor.transformers import oneshot from llmcompressor.modifiers.quantization import QuantizationModifier # Define the model ID for the model you want to quantize MODEL_ID = "perplexity-ai/r1-1776-distill-llama-70b" # Load the model and tokenizer with appropriate parameters model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True, # Add this to automatically trust remote code low_cpu_mem_usage=True, # Help with memory issues during loading offload_folder="offload" # Use disk offloading for large models ) tokenizer = AutoTokenizer.from_pretrained( MODEL_ID, trust_remote_code=True # Also need this for tokenizer ) # Configure the quantization recipe recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]) # Apply the quantization algorithm oneshot(model=model, recipe=recipe) # Define the directory to save the quantized model SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic" # Save the quantized model and tokenizer model.save_pretrained(SAVE_DIR) tokenizer.save_pretrained(SAVE_DIR) print(f"Quantized model saved to {SAVE_DIR}") ```