--- library_name: peft base_model: Xenova/tiny-random-Phi3ForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 910e0b83-865b-4e0a-a849-addd86b4d8de results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: Xenova/tiny-random-Phi3ForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - faee7c55ed6ea8a4_train_data.json ds_type: json format: custom path: /workspace/input_data/faee7c55ed6ea8a4_train_data.json type: field_input: content field_instruction: title field_output: abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: false group_by_length: true hub_model_id: jssky/910e0b83-865b-4e0a-a849-addd86b4d8de hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/faee7c55ed6ea8a4_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ce5659db-8c38-4285-b7dc-407731d10924 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ce5659db-8c38-4285-b7dc-407731d10924 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 910e0b83-865b-4e0a-a849-addd86b4d8de This model is a fine-tuned version of [Xenova/tiny-random-Phi3ForCausalLM](https://huggingface.co/Xenova/tiny-random-Phi3ForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.2723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.293 | 0.0411 | 375 | 10.2888 | | 10.268 | 0.0822 | 750 | 10.2771 | | 10.2795 | 0.1233 | 1125 | 10.2730 | | 10.2746 | 0.1644 | 1500 | 10.2723 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3