junyoung-00 commited on
Commit
937db36
·
verified ·
1 Parent(s): a4dafaf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -7
README.md CHANGED
@@ -17,10 +17,23 @@ This repository contains the model presented in the paper [**ChartCap: Mitigatin
17
 
18
  ## Model Description
19
 
20
- `Phi-3.5-vision-instruct-ChartCap` is a ChartCap-fine-tuned version of microsoft/Phi-3.5-vision-instruct.
21
 
22
  The model aims to generate high-quality, dense captions for charts, ensuring that the generated text accurately captures structural elements and key insights discernible from the charts, while mitigating the inclusion of extraneous or hallucinated information.
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ## How to Use
25
 
26
  ```python
@@ -65,10 +78,10 @@ print(response.strip())
65
  If you find this model or the associated research helpful, please cite:
66
 
67
  ```bibtex
68
- @inproceedings{{lim2025chartcap,
69
- title={{ChartCap: Mitigating Hallucination of Dense Chart Captioning}},
70
- author={{Junyoung Lim and Jaewoo Ahn and Gunhee Kim}},
71
- booktitle={{Proceedings of the IEEE/CVF International Conference on Computer Vision}},
72
- year={{2025}}
73
- }}
74
  ```
 
17
 
18
  ## Model Description
19
 
20
+ `Phi-3.5-vision-instruct-ChartCap` is a ChartCap-fine-tuned version of [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct).
21
 
22
  The model aims to generate high-quality, dense captions for charts, ensuring that the generated text accurately captures structural elements and key insights discernible from the charts, while mitigating the inclusion of extraneous or hallucinated information.
23
 
24
+ ## Required Packages
25
+
26
+ ```bash
27
+ flash_attn==2.5.8
28
+ numpy==1.24.4
29
+ Pillow==10.3.0
30
+ Requests==2.31.0
31
+ torch==2.3.0
32
+ torchvision==0.18.0
33
+ transformers==4.43.0
34
+ accelerate==0.30.0
35
+ ```
36
+
37
  ## How to Use
38
 
39
  ```python
 
78
  If you find this model or the associated research helpful, please cite:
79
 
80
  ```bibtex
81
+ @inproceedings{lim2025chartcap,
82
+ title = {ChartCap: Mitigating Hallucination of Dense Chart Captioning},
83
+ author = {Junyoung Lim and Jaewoo Ahn and Gunhee Kim},
84
+ booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision},
85
+ year = {2025}
86
+ }
87
  ```