{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a69851c5980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1769472, "_total_timesteps": 1750000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701937744495355841, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMA7sT2uEau6zuevOi4IFjgpps86GurHuQAAgD8AAIA/ZpYVPNK3mbt+/UC8nwNbPAPIyjyx5Ty9AACAPwAAgD+zn3Q9KdgXuuYnNzqXNR41tLZOOrutUrkAAIA/AACAPwBoPruGB18/fqy5PMEDvL6IR7u81rPcPAAAAAAAAAAAADCMvSlMc7rhxD+4bM1TNoPoB7s+G1g3AACAPwAAgD8aU4O99mxIuqpOgjnk7gI175CsO5QZl7gAAIA/AACAP1r5jj1S0Iu5xfXNOivV9DWSZLS6q/rwuQAAgD8AAIA/wIm8PY9aIrrb+nG5N8K8tDA9djvHjo44AACAPwAAgD+6NxY+rp+PusyDvDqQXyi2oU1vu34A27kAAIA/AACAPwDSXz3HXsI/qkdiPoG4sL1UpJ+8ftxYPQAAAAAAAAAAzWi+PXr9ZT7hODO+NkSDviB5WrqL1Lm9AAAAAAAAAACTbQW+x6Y1PmpKDT1Pk5a+iYDfvUxpS7wAAAAAAAAAAMDFt70pYG66elNzOxvmiLZkRwa5ikeLugAAgD8AAIA/M2eTPEhNr7pZaJg8rM2GvAA6FLv1u2m9AACAPwAAgD+z5kY9SHO2un24gTqFCQO2DjQXulr1k7kAAIA/AACAPw0jvz0pkA66Bs3nu4RDCjbjOF+6bTR3tQAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.011126857142857105, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGBuERaouPGMAWyUTegDjAF0lEdAxw5FaWX1J3V9lChoBkdAZwinb7CSBGgHTegDaAhHQMcQgUUoKD11fZQoaAZHQGRdwdbPhQ5oB03oA2gIR0DHEefQWvbHdX2UKGgGR0BjgO49X9zfaAdN6ANoCEdAxxJOWGh24nV9lChoBkdAYzKwB5ooNWgHTegDaAhHQMcSzsPz4Dd1fZQoaAZHQGAKY8EFGG5oB03oA2gIR0DHE2rjcVQAdX2UKGgGR0BiXqH446wMaAdN6ANoCEdAxxRvbGFSKnV9lChoBkdAaE26zVtoBmgHTegDaAhHQMcUy2Lgn+h1fZQoaAZHQGW1aYVqN6xoB03oA2gIR0DHFTSNIbwSdX2UKGgGR0BjP+HYYixFaAdN6ANoCEdAxxU3RrJr+HV9lChoBkdAZGkz+FUQ1GgHTegDaAhHQMcVuarvLHN1fZQoaAZHQEd0yN4qwyJoB0vMaAhHQMcWNdX1ant1fZQoaAZHQGfhq2SdOItoB03oA2gIR0DHFrNJg9eQdX2UKGgGR0BlBqE8JUo8aAdN6ANoCEdAxxa4JXyRS3V9lChoBkdAYFdAnDziCWgHTegDaAhHQMcXAZggHNZ1fZQoaAZHQF/G/OMVDa5oB03oA2gIR0DHFwowudwvdX2UKGgGR0BiQBoZhrnDaAdN6ANoCEdAxxcV1kDp1XV9lChoBkdAZClxEORT0mgHTegDaAhHQMcXJEBjnV51fZQoaAZHQE8mzfrKNhpoB0vTaAhHQMcZWkit7rt1fZQoaAZHQGNmkDyOJchoB03oA2gIR0DHGkzUExIrdX2UKGgGR0Bk3b7EYO2BaAdN6ANoCEdAxxtwXKr7wnV9lChoBkdAK8K4pc5bQmgHS89oCEdAxxt1jIaLoHV9lChoBkdAYfyZnctXgmgHTegDaAhHQMcbvkRSP2h1fZQoaAZHQGEQFSsKb8ZoB03oA2gIR0DHHEGT3Zf2dX2UKGgGR0BhFmRs/IKdaAdN6ANoCEdAxxzj1PFefXV9lChoBkdATA2aYu01ImgHS8FoCEdAxzOMqxTsIHV9lChoBkdAXq1f9gnc+WgHTegDaAhHQMc0AaHCXQd1fZQoaAZHQGIKW07bL2ZoB03oA2gIR0DHNIpGDtgKdX2UKGgGR0Bj+yVyFPBSaAdN6ANoCEdAxzSNMg2ZRnV9lChoBkdAZPgBCD28I2gHTegDaAhHQMc1NUNayKN1fZQoaAZHQGGtkQ5FPSFoB03oA2gIR0DHNbNpfx+bdX2UKGgGR0BjgSgmJFb3aAdN6ANoCEdAxzYm9cry2HV9lChoBkdAXuj/wRXfZWgHTegDaAhHQMc2KtRNyo51fZQoaAZHQGb51ENOM2poB03oA2gIR0DHNmgMtseodX2UKGgGR0BkPIMF2V3VaAdN6ANoCEdAxzZwLWqcVnV9lChoBkdAXpLpRoAXEmgHTegDaAhHQMc2iBllK9R1fZQoaAZHQETSsiB5HExoB0u2aAhHQMc2on5i3G51fZQoaAZHQGALs/yGzrxoB03oA2gIR0DHOPqhrWRSdX2UKGgGR0BplFlPJq7AaAdN6ANoCEdAxzoTDx9XtHV9lChoBkdAZqNfxc3VC2gHTegDaAhHQMc6GCrtE5R1fZQoaAZHQGJKwevIOpdoB03oA2gIR0DHOl8R8MNMdX2UKGgGR0Aloy8jAzpHaAdL12gIR0DHOy2V9nbqdX2UKGgGR0BjcSprDZUUaAdN6ANoCEdAxzveDA8B/HV9lChoBkdAUNJBdD6WPmgHS5BoCEdAxzwDBv73wnV9lChoBkdAYZfV3EAHV2gHTegDaAhHQMc9BkgwGnp1fZQoaAZHQGWbDYZl4C9oB03oA2gIR0DHPVmCGvfTdX2UKGgGR0BhrEHryDqXaAdN6ANoCEdAxz21QHiWFHV9lChoBkdAZEYcWj4592gHTegDaAhHQMc9t/Abhm51fZQoaAZHQGWm7r9l2/1oB03oA2gIR0DHPrD79AHFdX2UKGgGR0BisxV6u4gBaAdN6ANoCEdAxz8wspXp4nV9lChoBkdAXxmOgg5imWgHTegDaAhHQMc/NZF5Oah1fZQoaAZHQBXbHZK3/gloB0u3aAhHQMc/Rg5imVJ1fZQoaAZHQGQ8n+yZ8a5oB03oA2gIR0DHP3xQ1rIpdX2UKGgGR0BgxGzposZpaAdN6ANoCEdAxz+DmlImPnV9lChoBkdAYT6w5/9YOmgHTegDaAhHQMc/nWxQizN1fZQoaAZHQGJRy8zyjHpoB03oA2gIR0DHP7Zobn5jdX2UKGgGR0Biq3nyNGViaAdN6ANoCEdAx0Of6vaDf3V9lChoBkdAZaUDFId2gWgHTegDaAhHQMdDpVGkN4J1fZQoaAZHQGSJjSgGr0doB03oA2gIR0DHRIkAPuohdX2UKGgGR0BnBt3+uNgjaAdN6ANoCEdAx0UNIqbz9XV9lChoBkdAZn2emvW6LGgHTegDaAhHQMdFK7GNrCZ1fZQoaAZHQGGRwKBun/FoB03oA2gIR0DHRhSlzltCdX2UKGgGR0Bj0Z9XtBv8aAdN6ANoCEdAx0ZmB+Wnj3V9lChoBkdAYOPflZHNHGgHTegDaAhHQMdGxZUkv9N1fZQoaAZHQGUBjOs1baBoB03oA2gIR0DHR8yLAHmjdX2UKGgGR0BhMWBas6q9aAdN6ANoCEdAx0hIU5+6RXV9lChoBkdAZFF1DBuXNWgHTegDaAhHQMdITN2TxG51fZQoaAZHQGUvji4rjHZoB03oA2gIR0DHSFwRh+fAdX2UKGgGR0BceUc0cfeUaAdN6ANoCEdAx0iOI2wV03V9lChoBkdAYF3S1E3KjmgHTegDaAhHQMdImcYZVGV1fZQoaAZHQGi3c5sCT2ZoB03oA2gIR0DHSLq7PIGRdX2UKGgGR0Bgajzyz5XVaAdN6ANoCEdAx0jcuCf6GnV9lChoBkdAUXViF0xM4GgHS7hoCEdAx0p6jafzz3V9lChoBkdAY6fgjQiRn2gHTegDaAhHQMdMpK8+Ro11fZQoaAZHQGOjHtWuHN5oB03oA2gIR0DHTKoA6uGLdX2UKGgGR0Beb+4b0e2eaAdN6ANoCEdAx02gKv3ajHV9lChoBkdAYY2xY7q6fGgHTegDaAhHQMdOLh9kSVZ1fZQoaAZHQGEPcE/0NBpoB03oA2gIR0DHTk73Cbc5dX2UKGgGR0BEPxZuAI6baAdLtGgIR0DHTlw+8oQWdX2UKGgGR0Bn6HUONHYpaAdN6ANoCEdAx09AQoTfznV9lChoBkdAZ4wHVwxWUGgHTegDaAhHQMdPkavq1PZ1fZQoaAZHQEvfum78Nx5oB0vFaAhHQMdP+7JfYz11fZQoaAZHQGGmPhqCYkVoB03oA2gIR0DHUAoTqSowdX2UKGgGR0BiTAs7MgU2aAdN6ANoCEdAx1FYCSzPbHV9lChoBkdAYoZ/z8P4EmgHTegDaAhHQMdR66k69011fZQoaAZHQGGc4L9deIFoB03oA2gIR0DHUfB8v24/dX2UKGgGR0BlSMlu3trsaAdN6ANoCEdAx1IAqkM1CXV9lChoBkdAYufhPTG5tmgHTegDaAhHQMdSL6FmFrV1fZQoaAZHQGBS5m7J4jdoB03oA2gIR0DHUjXnQpnZdX2UKGgGR0BggQhIOH32aAdN6ANoCEdAx1JlCKrJbXV9lChoBkdASwITj/+85GgHS8toCEdAx1NbPNVzZHV9lChoBkdAJr3sPatcOmgHS7loCEdAx1NyJMxoI3V9lChoBkdAZkPo/zJ6p2gHTegDaAhHQMdTi3wCr951fZQoaAZHQHGXzUqhDgJoB01AAWgIR0DHVMEB0ZFYdX2UKGgGR0Bk0urZJ04jaAdN6ANoCEdAx1VhhMJyAHV9lChoBkdAZ+A//vOQhmgHTegDaAhHQMdWSi0F8oh1fZQoaAZHQGBH7KA8SwpoB03oA2gIR0DHVxEgdOqOdX2UKGgGR0BhchSiudPMaAdN6ANoCEdAx1ck/i5uqHV9lChoBkdAYkn40Mw1zmgHTegDaAhHQMdYVMAvL5h1fZQoaAZHQGA+QXyiEg5oB03oA2gIR0DHWMkCzTnadWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 108, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 4096, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}