kalomaze commited on
Commit
070073a
·
verified ·
1 Parent(s): 33c212c

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "arcee-ai/Llama-3.1-SuperNova-Lite",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128009,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 14336,
15
+ "max_position_embeddings": 131072,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 8.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.47.1",
34
+ "use_cache": false,
35
+ "vocab_size": 128256
36
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 128001,
7
+ 128008,
8
+ 128009
9
+ ],
10
+ "transformers_version": "4.47.1"
11
+ }
global_step324/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af1817ded6685be8fb549573e9ab25af1232a12ce53c69f1f92700e6c84c9745
3
+ size 12108989031
global_step324/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8c4861ad826ec66356097c3f48e9bd1c053f3e7c8b1d1dc2dab1fb61ba33b14
3
+ size 12108989031
global_step324/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2503e19e0d32fe82569fdaaadb7ea7ba63746f94d4657ea1fe510af64fd4d576
3
+ size 12108989031
global_step324/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02c76500efecaeaf81a41d21206eb6a1dcbde65f52fe5d19c3c0022677ab92bc
3
+ size 12108989031
global_step324/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eeef17365a151ce4ca2647d76e8e1ca38d7dc6d64382a55c9047f3a892a08d6
3
+ size 152165
global_step324/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:499551dc2c6777cab8525a98cd3a47630edc335bcf9f11fc1da3c95c73cf5078
3
+ size 152165
global_step324/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6c3ec972b0753775c22dcd1132fdf695b4c141bbe0bcfda137612c83ff4dc42
3
+ size 152165
global_step324/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07a052e64663d0dbcdd175dfc94c718be59cb635f3d2333692d0fff84a4c1daa
3
+ size 152165
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step324
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a3a0266bde6eac1b8d3d130a92166e8a4ffd5b0d26e63013d98f94eaf715a44
3
+ size 4976698672
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd1ef294292b11078f7e5999d6478ab89d80e964a7d7aab33f0174d9f9f885e
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:517ffd0ecedccd3fa38fcf05ef99704f479fa13c61ea5b1d4147952e9b495cdc
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92a00d4577187ca4f8372bdffe17724e249aa6e3adb515020baeaf373485b9ee
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:418a5f105ae834c3075024076916b2a9475918fe034c12d0dd5b6d91f1aba467
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e07ace389d24bc1307b74f42a1e7b8f0117b0db853e2df64ff3f15cb92916a2
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da6a990f346d7014dffb28fa2bc7d3b890bd3c53712503fce3656da48d3d6e50
3
+ size 15024
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e95f356ca38179b05993f55daece0223e96fa10b9a1b9ea2102a739211333f63
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02efb87663fa59a8ff631d8065648c110e216fdd6d5eb19b4f186d11adbf1f90
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ade1dac458f86f9bea8bf35b713f14e1bbed24228429534038e9f7e54ea3e8b6
3
+ size 17208712
tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizerFast"
2064
+ }
trainer_state.json ADDED
@@ -0,0 +1,2301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 5.925925925925926,
5
+ "eval_steps": 500,
6
+ "global_step": 324,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.018518518518518517,
13
+ "grad_norm": 11.543508930958351,
14
+ "learning_rate": 1.3333333333333334e-07,
15
+ "loss": 2.5502,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.037037037037037035,
20
+ "grad_norm": 11.036573442393484,
21
+ "learning_rate": 2.6666666666666667e-07,
22
+ "loss": 2.524,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.05555555555555555,
27
+ "grad_norm": 10.633243381981275,
28
+ "learning_rate": 4e-07,
29
+ "loss": 2.204,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.07407407407407407,
34
+ "grad_norm": 10.844156107788931,
35
+ "learning_rate": 5.333333333333333e-07,
36
+ "loss": 2.6556,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.09259259259259259,
41
+ "grad_norm": 10.31689604512179,
42
+ "learning_rate": 6.666666666666666e-07,
43
+ "loss": 2.3083,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.1111111111111111,
48
+ "grad_norm": 9.817262372273788,
49
+ "learning_rate": 8e-07,
50
+ "loss": 2.4079,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.12962962962962962,
55
+ "grad_norm": 9.116167654173315,
56
+ "learning_rate": 9.333333333333333e-07,
57
+ "loss": 2.3343,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.14814814814814814,
62
+ "grad_norm": 7.891190287353295,
63
+ "learning_rate": 1.0666666666666667e-06,
64
+ "loss": 2.3883,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.16666666666666666,
69
+ "grad_norm": 8.42233222280676,
70
+ "learning_rate": 1.2e-06,
71
+ "loss": 2.4733,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.18518518518518517,
76
+ "grad_norm": 6.5902867588718825,
77
+ "learning_rate": 1.3333333333333332e-06,
78
+ "loss": 2.2598,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.2037037037037037,
83
+ "grad_norm": 7.468618276890062,
84
+ "learning_rate": 1.4666666666666665e-06,
85
+ "loss": 2.6818,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.2222222222222222,
90
+ "grad_norm": 6.524430399848726,
91
+ "learning_rate": 1.6e-06,
92
+ "loss": 2.0609,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.24074074074074073,
97
+ "grad_norm": 15.819198637332978,
98
+ "learning_rate": 1.7333333333333334e-06,
99
+ "loss": 1.8734,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.25925925925925924,
104
+ "grad_norm": 12.251404296601525,
105
+ "learning_rate": 1.8666666666666667e-06,
106
+ "loss": 2.3952,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.2777777777777778,
111
+ "grad_norm": 12.014341658055084,
112
+ "learning_rate": 2e-06,
113
+ "loss": 2.0763,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.2962962962962963,
118
+ "grad_norm": 9.119171460936416,
119
+ "learning_rate": 1.999948316841124e-06,
120
+ "loss": 2.2581,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.3148148148148148,
125
+ "grad_norm": 7.0075699362300785,
126
+ "learning_rate": 1.999793272706794e-06,
127
+ "loss": 2.3189,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.3333333333333333,
132
+ "grad_norm": 8.434551205593468,
133
+ "learning_rate": 1.9995348836233515e-06,
134
+ "loss": 2.2956,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.35185185185185186,
139
+ "grad_norm": 9.802253199544783,
140
+ "learning_rate": 1.999173176299524e-06,
141
+ "loss": 2.1106,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.37037037037037035,
146
+ "grad_norm": 7.364889431202562,
147
+ "learning_rate": 1.9987081881236665e-06,
148
+ "loss": 2.4001,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.3888888888888889,
153
+ "grad_norm": 5.5030313904087995,
154
+ "learning_rate": 1.9981399671598938e-06,
155
+ "loss": 2.0534,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.4074074074074074,
160
+ "grad_norm": 4.022498450217217,
161
+ "learning_rate": 1.997468572143115e-06,
162
+ "loss": 1.9262,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.42592592592592593,
167
+ "grad_norm": 4.237115597250525,
168
+ "learning_rate": 1.9966940724729603e-06,
169
+ "loss": 2.2743,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.4444444444444444,
174
+ "grad_norm": 4.300566273621826,
175
+ "learning_rate": 1.995816548206609e-06,
176
+ "loss": 2.028,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.46296296296296297,
181
+ "grad_norm": 4.157703163471443,
182
+ "learning_rate": 1.994836090050514e-06,
183
+ "loss": 2.2021,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.48148148148148145,
188
+ "grad_norm": 4.59475590188255,
189
+ "learning_rate": 1.993752799351023e-06,
190
+ "loss": 2.1409,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.5,
195
+ "grad_norm": 3.553829762084,
196
+ "learning_rate": 1.992566788083908e-06,
197
+ "loss": 2.1277,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.5185185185185185,
202
+ "grad_norm": 2.808767466788676,
203
+ "learning_rate": 1.9912781788427856e-06,
204
+ "loss": 2.074,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.5370370370370371,
209
+ "grad_norm": 2.945994143903197,
210
+ "learning_rate": 1.989887104826449e-06,
211
+ "loss": 1.9894,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.5555555555555556,
216
+ "grad_norm": 2.9859402190241,
217
+ "learning_rate": 1.988393709825096e-06,
218
+ "loss": 2.1096,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.5740740740740741,
223
+ "grad_norm": 2.788646179800959,
224
+ "learning_rate": 1.9867981482054697e-06,
225
+ "loss": 2.315,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.5925925925925926,
230
+ "grad_norm": 2.428878990731119,
231
+ "learning_rate": 1.9851005848948986e-06,
232
+ "loss": 2.1129,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.6111111111111112,
237
+ "grad_norm": 2.326070514005508,
238
+ "learning_rate": 1.983301195364252e-06,
239
+ "loss": 2.3507,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.6296296296296297,
244
+ "grad_norm": 2.2448623338584524,
245
+ "learning_rate": 1.9814001656098e-06,
246
+ "loss": 2.2176,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.6481481481481481,
251
+ "grad_norm": 3.345489216172997,
252
+ "learning_rate": 1.9793976921339876e-06,
253
+ "loss": 2.0352,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.6666666666666666,
258
+ "grad_norm": 2.454245882780074,
259
+ "learning_rate": 1.9772939819251245e-06,
260
+ "loss": 1.7644,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.6851851851851852,
265
+ "grad_norm": 2.2823601110851115,
266
+ "learning_rate": 1.9750892524359894e-06,
267
+ "loss": 2.0044,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.7037037037037037,
272
+ "grad_norm": 2.378703420397497,
273
+ "learning_rate": 1.9727837315613503e-06,
274
+ "loss": 1.9992,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.7222222222222222,
279
+ "grad_norm": 2.2038000284491392,
280
+ "learning_rate": 1.9703776576144106e-06,
281
+ "loss": 2.1248,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.7407407407407407,
286
+ "grad_norm": 1.6625652175528476,
287
+ "learning_rate": 1.9678712793021747e-06,
288
+ "loss": 1.7908,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.7592592592592593,
293
+ "grad_norm": 1.649500064167637,
294
+ "learning_rate": 1.9652648556997396e-06,
295
+ "loss": 2.0346,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.7777777777777778,
300
+ "grad_norm": 2.127402784391995,
301
+ "learning_rate": 1.962558656223516e-06,
302
+ "loss": 2.1544,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.7962962962962963,
307
+ "grad_norm": 2.4572023559040668,
308
+ "learning_rate": 1.959752960603378e-06,
309
+ "loss": 1.9295,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.8148148148148148,
314
+ "grad_norm": 1.511188510592738,
315
+ "learning_rate": 1.956848058853751e-06,
316
+ "loss": 2.1473,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.8333333333333334,
321
+ "grad_norm": 2.6425186462750276,
322
+ "learning_rate": 1.9538442512436325e-06,
323
+ "loss": 1.7632,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.8518518518518519,
328
+ "grad_norm": 2.528104013708182,
329
+ "learning_rate": 1.9507418482655546e-06,
330
+ "loss": 1.9125,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.8703703703703703,
335
+ "grad_norm": 2.660072260955662,
336
+ "learning_rate": 1.947541170603488e-06,
337
+ "loss": 1.9839,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.8888888888888888,
342
+ "grad_norm": 2.303424321729968,
343
+ "learning_rate": 1.9442425490996984e-06,
344
+ "loss": 1.8381,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.9074074074074074,
349
+ "grad_norm": 1.7413263437826438,
350
+ "learning_rate": 1.940846324720544e-06,
351
+ "loss": 2.2322,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.9259259259259259,
356
+ "grad_norm": 3.681741007928878,
357
+ "learning_rate": 1.9373528485212327e-06,
358
+ "loss": 2.1221,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.9444444444444444,
363
+ "grad_norm": 2.729258330107977,
364
+ "learning_rate": 1.9337624816095357e-06,
365
+ "loss": 1.8567,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.9629629629629629,
370
+ "grad_norm": 1.9607649593150183,
371
+ "learning_rate": 1.9300755951084592e-06,
372
+ "loss": 2.0553,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.9814814814814815,
377
+ "grad_norm": 2.119362131138027,
378
+ "learning_rate": 1.9262925701178863e-06,
379
+ "loss": 1.936,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 1.0,
384
+ "grad_norm": 2.057082578120893,
385
+ "learning_rate": 1.9224137976751793e-06,
386
+ "loss": 1.9584,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 1.0185185185185186,
391
+ "grad_norm": 2.0207421134902708,
392
+ "learning_rate": 1.918439678714763e-06,
393
+ "loss": 1.9837,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 1.0185185185185186,
398
+ "grad_norm": 1.938684997881939,
399
+ "learning_rate": 1.9143706240266807e-06,
400
+ "loss": 1.9354,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 1.037037037037037,
405
+ "grad_norm": 2.0601195298871398,
406
+ "learning_rate": 1.910207054214133e-06,
407
+ "loss": 2.0174,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 1.0555555555555556,
412
+ "grad_norm": 2.041620934780644,
413
+ "learning_rate": 1.9059493996499985e-06,
414
+ "loss": 1.7447,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 1.074074074074074,
419
+ "grad_norm": 1.5682604954979573,
420
+ "learning_rate": 1.9015981004323534e-06,
421
+ "loss": 2.0106,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 1.0925925925925926,
426
+ "grad_norm": 2.865965004078874,
427
+ "learning_rate": 1.8971536063389742e-06,
428
+ "loss": 2.2393,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 1.1111111111111112,
433
+ "grad_norm": 2.7462581398678787,
434
+ "learning_rate": 1.89261637678085e-06,
435
+ "loss": 1.7421,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 1.1296296296296295,
440
+ "grad_norm": 3.120548437283878,
441
+ "learning_rate": 1.8879868807546932e-06,
442
+ "loss": 1.9877,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 1.1481481481481481,
447
+ "grad_norm": 3.242255359642735,
448
+ "learning_rate": 1.8832655967944605e-06,
449
+ "loss": 1.9799,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 1.1666666666666667,
454
+ "grad_norm": 2.2159733738020275,
455
+ "learning_rate": 1.8784530129218907e-06,
456
+ "loss": 2.0581,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 1.1851851851851851,
461
+ "grad_norm": 2.08989006018966,
462
+ "learning_rate": 1.873549626596057e-06,
463
+ "loss": 1.8653,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 1.2037037037037037,
468
+ "grad_norm": 1.4837874153680628,
469
+ "learning_rate": 1.8685559446619487e-06,
470
+ "loss": 1.9734,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 1.2222222222222223,
475
+ "grad_norm": 2.1071721482630403,
476
+ "learning_rate": 1.863472483298079e-06,
477
+ "loss": 1.7762,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 1.2407407407407407,
482
+ "grad_norm": 2.6554851825477646,
483
+ "learning_rate": 1.858299767963131e-06,
484
+ "loss": 2.2267,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 1.2592592592592593,
489
+ "grad_norm": 2.135758261049139,
490
+ "learning_rate": 1.8530383333416415e-06,
491
+ "loss": 2.0624,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 1.2777777777777777,
496
+ "grad_norm": 2.256153463268274,
497
+ "learning_rate": 1.847688723288733e-06,
498
+ "loss": 2.0254,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 1.2962962962962963,
503
+ "grad_norm": 1.9270711341308566,
504
+ "learning_rate": 1.8422514907738986e-06,
505
+ "loss": 2.0873,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 1.3148148148148149,
510
+ "grad_norm": 1.3698407936967985,
511
+ "learning_rate": 1.8367271978238418e-06,
512
+ "loss": 1.5655,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 1.3333333333333333,
517
+ "grad_norm": 1.7934950271719698,
518
+ "learning_rate": 1.8311164154643833e-06,
519
+ "loss": 2.1081,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 1.3518518518518519,
524
+ "grad_norm": 1.7554770045810462,
525
+ "learning_rate": 1.8254197236614353e-06,
526
+ "loss": 1.6326,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 1.3703703703703702,
531
+ "grad_norm": 1.7910726004582642,
532
+ "learning_rate": 1.8196377112610524e-06,
533
+ "loss": 1.9896,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 1.3888888888888888,
538
+ "grad_norm": 1.43155366985165,
539
+ "learning_rate": 1.8137709759285662e-06,
540
+ "loss": 1.8557,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 1.4074074074074074,
545
+ "grad_norm": 1.816009532890727,
546
+ "learning_rate": 1.8078201240868048e-06,
547
+ "loss": 1.7878,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 1.425925925925926,
552
+ "grad_norm": 1.612331881267257,
553
+ "learning_rate": 1.8017857708534106e-06,
554
+ "loss": 1.982,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 1.4444444444444444,
559
+ "grad_norm": 1.8628647966869196,
560
+ "learning_rate": 1.7956685399772576e-06,
561
+ "loss": 1.9704,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 1.462962962962963,
566
+ "grad_norm": 1.9936817464029801,
567
+ "learning_rate": 1.7894690637739762e-06,
568
+ "loss": 1.8299,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 1.4814814814814814,
573
+ "grad_norm": 2.463393533692339,
574
+ "learning_rate": 1.7831879830605936e-06,
575
+ "loss": 2.0444,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 1.5,
580
+ "grad_norm": 2.4979859149192305,
581
+ "learning_rate": 1.776825947089294e-06,
582
+ "loss": 2.0278,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 1.5185185185185186,
587
+ "grad_norm": 2.7584711281071606,
588
+ "learning_rate": 1.7703836134803102e-06,
589
+ "loss": 1.8715,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 1.5370370370370372,
594
+ "grad_norm": 1.9266117476771798,
595
+ "learning_rate": 1.7638616481539448e-06,
596
+ "loss": 2.3658,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 1.5555555555555556,
601
+ "grad_norm": 2.7609401761288908,
602
+ "learning_rate": 1.7572607252617377e-06,
603
+ "loss": 1.9736,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 1.574074074074074,
608
+ "grad_norm": 2.114937054090088,
609
+ "learning_rate": 1.7505815271167822e-06,
610
+ "loss": 2.0398,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 1.5925925925925926,
615
+ "grad_norm": 2.0664911123203513,
616
+ "learning_rate": 1.743824744123196e-06,
617
+ "loss": 2.1056,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 1.6111111111111112,
622
+ "grad_norm": 2.5153483082090213,
623
+ "learning_rate": 1.7369910747047571e-06,
624
+ "loss": 1.8765,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 1.6296296296296298,
629
+ "grad_norm": 1.8949983903048848,
630
+ "learning_rate": 1.7300812252327102e-06,
631
+ "loss": 2.1245,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 1.6481481481481481,
636
+ "grad_norm": 2.7037983362018565,
637
+ "learning_rate": 1.723095909952751e-06,
638
+ "loss": 1.5174,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 1.6666666666666665,
643
+ "grad_norm": 2.3396050215927673,
644
+ "learning_rate": 1.7160358509111989e-06,
645
+ "loss": 2.0559,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 1.6851851851851851,
650
+ "grad_norm": 2.1357187531056976,
651
+ "learning_rate": 1.7089017778803595e-06,
652
+ "loss": 1.8264,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 1.7037037037037037,
657
+ "grad_norm": 2.5298502653457358,
658
+ "learning_rate": 1.701694428283093e-06,
659
+ "loss": 2.1282,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 1.7222222222222223,
664
+ "grad_norm": 2.0789215851330343,
665
+ "learning_rate": 1.6944145471165881e-06,
666
+ "loss": 2.1829,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 1.7407407407407407,
671
+ "grad_norm": 1.8110067836025452,
672
+ "learning_rate": 1.6870628868753545e-06,
673
+ "loss": 1.7584,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 1.7592592592592593,
678
+ "grad_norm": 2.7069181555694666,
679
+ "learning_rate": 1.6796402074734402e-06,
680
+ "loss": 1.897,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 1.7777777777777777,
685
+ "grad_norm": 2.3956521553142176,
686
+ "learning_rate": 1.6721472761658836e-06,
687
+ "loss": 1.9119,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 1.7962962962962963,
692
+ "grad_norm": 1.3732811625669847,
693
+ "learning_rate": 1.664584867469403e-06,
694
+ "loss": 1.6848,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 1.8148148148148149,
699
+ "grad_norm": 1.9512817035138257,
700
+ "learning_rate": 1.6569537630823382e-06,
701
+ "loss": 2.0185,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 1.8333333333333335,
706
+ "grad_norm": 1.864374052494234,
707
+ "learning_rate": 1.6492547518038503e-06,
708
+ "loss": 1.925,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 1.8518518518518519,
713
+ "grad_norm": 1.7728078338576356,
714
+ "learning_rate": 1.6414886294523857e-06,
715
+ "loss": 1.8965,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 1.8703703703703702,
720
+ "grad_norm": 1.8362690886038369,
721
+ "learning_rate": 1.6336561987834151e-06,
722
+ "loss": 1.8881,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 1.8888888888888888,
727
+ "grad_norm": 3.120191999390615,
728
+ "learning_rate": 1.6257582694064556e-06,
729
+ "loss": 1.7192,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 1.9074074074074074,
734
+ "grad_norm": 2.3586839267066044,
735
+ "learning_rate": 1.6177956577013846e-06,
736
+ "loss": 1.9387,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 1.925925925925926,
741
+ "grad_norm": 2.779686602481001,
742
+ "learning_rate": 1.6097691867340543e-06,
743
+ "loss": 1.9497,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 1.9444444444444444,
748
+ "grad_norm": 2.321935224272705,
749
+ "learning_rate": 1.6016796861712125e-06,
750
+ "loss": 1.9367,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 1.9629629629629628,
755
+ "grad_norm": 2.3211469537338276,
756
+ "learning_rate": 1.5935279921947451e-06,
757
+ "loss": 1.9765,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 1.9814814814814814,
762
+ "grad_norm": 1.8048838385036454,
763
+ "learning_rate": 1.585314947415242e-06,
764
+ "loss": 2.1524,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 2.0,
769
+ "grad_norm": 2.2432536623121866,
770
+ "learning_rate": 1.5770414007848994e-06,
771
+ "loss": 1.7596,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 2.0185185185185186,
776
+ "grad_norm": 2.1527401042322984,
777
+ "learning_rate": 1.5687082075097674e-06,
778
+ "loss": 2.1903,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 2.0185185185185186,
783
+ "grad_norm": 2.822074512897879,
784
+ "learning_rate": 1.5603162289613501e-06,
785
+ "loss": 2.0324,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 2.037037037037037,
790
+ "grad_norm": 1.9685786022400997,
791
+ "learning_rate": 1.551866332587568e-06,
792
+ "loss": 1.8009,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 2.0555555555555554,
797
+ "grad_norm": 2.515751939304619,
798
+ "learning_rate": 1.5433593918230955e-06,
799
+ "loss": 1.9487,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 2.074074074074074,
804
+ "grad_norm": 2.349862710312166,
805
+ "learning_rate": 1.5347962859990742e-06,
806
+ "loss": 1.9967,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 2.0925925925925926,
811
+ "grad_norm": 3.1803776539735233,
812
+ "learning_rate": 1.5261779002522216e-06,
813
+ "loss": 2.0633,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 2.111111111111111,
818
+ "grad_norm": 2.6762686321709372,
819
+ "learning_rate": 1.517505125433338e-06,
820
+ "loss": 2.1631,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 2.1296296296296298,
825
+ "grad_norm": 3.17350275984332,
826
+ "learning_rate": 1.5087788580152206e-06,
827
+ "loss": 1.7666,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 2.148148148148148,
832
+ "grad_norm": 2.7374508335058128,
833
+ "learning_rate": 1.5e-06,
834
+ "loss": 1.6363,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 2.1666666666666665,
839
+ "grad_norm": 2.518836889589819,
840
+ "learning_rate": 1.4911694588259037e-06,
841
+ "loss": 2.0306,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 2.185185185185185,
846
+ "grad_norm": 2.0516490709057438,
847
+ "learning_rate": 1.482288147273456e-06,
848
+ "loss": 1.7322,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 2.2037037037037037,
853
+ "grad_norm": 2.143653181079979,
854
+ "learning_rate": 1.4733569833711299e-06,
855
+ "loss": 1.9715,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 2.2222222222222223,
860
+ "grad_norm": 1.5702663497071736,
861
+ "learning_rate": 1.4643768903004504e-06,
862
+ "loss": 1.6725,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 2.240740740740741,
867
+ "grad_norm": 2.1780515590527045,
868
+ "learning_rate": 1.455348796300571e-06,
869
+ "loss": 1.8871,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 2.259259259259259,
874
+ "grad_norm": 1.7384200856334007,
875
+ "learning_rate": 1.4462736345723259e-06,
876
+ "loss": 1.8607,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 2.2777777777777777,
881
+ "grad_norm": 2.602970978377197,
882
+ "learning_rate": 1.437152343181765e-06,
883
+ "loss": 2.0933,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 2.2962962962962963,
888
+ "grad_norm": 2.2409639030493516,
889
+ "learning_rate": 1.4279858649631928e-06,
890
+ "loss": 2.1028,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 2.314814814814815,
895
+ "grad_norm": 2.083427934167806,
896
+ "learning_rate": 1.4187751474217096e-06,
897
+ "loss": 1.7588,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 2.3333333333333335,
902
+ "grad_norm": 1.710343556502238,
903
+ "learning_rate": 1.4095211426352718e-06,
904
+ "loss": 1.8985,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 2.351851851851852,
909
+ "grad_norm": 2.4282958584597645,
910
+ "learning_rate": 1.4002248071562778e-06,
911
+ "loss": 1.8267,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 2.3703703703703702,
916
+ "grad_norm": 2.2052175185263936,
917
+ "learning_rate": 1.3908871019126954e-06,
918
+ "loss": 2.254,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 2.388888888888889,
923
+ "grad_norm": 2.4962771616425745,
924
+ "learning_rate": 1.3815089921087315e-06,
925
+ "loss": 1.8375,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 2.4074074074074074,
930
+ "grad_norm": 2.420921240604477,
931
+ "learning_rate": 1.3720914471250642e-06,
932
+ "loss": 1.9705,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 2.425925925925926,
937
+ "grad_norm": 1.6871014164962779,
938
+ "learning_rate": 1.3626354404186404e-06,
939
+ "loss": 1.866,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 2.4444444444444446,
944
+ "grad_norm": 1.5220778910671986,
945
+ "learning_rate": 1.3531419494220545e-06,
946
+ "loss": 2.0116,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 2.462962962962963,
951
+ "grad_norm": 1.9736590287767704,
952
+ "learning_rate": 1.343611955442513e-06,
953
+ "loss": 1.7881,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 2.4814814814814814,
958
+ "grad_norm": 1.357453526449638,
959
+ "learning_rate": 1.334046443560402e-06,
960
+ "loss": 1.7624,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 2.5,
965
+ "grad_norm": 1.7906511346102865,
966
+ "learning_rate": 1.324446402527462e-06,
967
+ "loss": 1.7147,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 2.5185185185185186,
972
+ "grad_norm": 2.0256913340352,
973
+ "learning_rate": 1.3148128246645848e-06,
974
+ "loss": 1.657,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 2.537037037037037,
979
+ "grad_norm": 2.4368648915605786,
980
+ "learning_rate": 1.3051467057592413e-06,
981
+ "loss": 1.848,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 2.5555555555555554,
986
+ "grad_norm": 1.7920760208344662,
987
+ "learning_rate": 1.2954490449625491e-06,
988
+ "loss": 2.2794,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 2.574074074074074,
993
+ "grad_norm": 2.5934703428783115,
994
+ "learning_rate": 1.2857208446859957e-06,
995
+ "loss": 2.1465,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 2.5925925925925926,
1000
+ "grad_norm": 1.788260906958661,
1001
+ "learning_rate": 1.2759631104978224e-06,
1002
+ "loss": 2.067,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 2.611111111111111,
1007
+ "grad_norm": 2.7522723362234474,
1008
+ "learning_rate": 1.2661768510190816e-06,
1009
+ "loss": 1.8176,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 2.6296296296296298,
1014
+ "grad_norm": 2.43143502900473,
1015
+ "learning_rate": 1.2563630778193802e-06,
1016
+ "loss": 2.3366,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 2.648148148148148,
1021
+ "grad_norm": 1.7241238478367036,
1022
+ "learning_rate": 1.2465228053123172e-06,
1023
+ "loss": 1.9895,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 2.6666666666666665,
1028
+ "grad_norm": 2.0266143160589802,
1029
+ "learning_rate": 1.2366570506506268e-06,
1030
+ "loss": 1.7781,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 2.685185185185185,
1035
+ "grad_norm": 1.9459670874156856,
1036
+ "learning_rate": 1.226766833621041e-06,
1037
+ "loss": 2.3116,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 2.7037037037037037,
1042
+ "grad_norm": 2.248556130449579,
1043
+ "learning_rate": 1.2168531765388755e-06,
1044
+ "loss": 1.8032,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 2.7222222222222223,
1049
+ "grad_norm": 1.711136470727862,
1050
+ "learning_rate": 1.2069171041423583e-06,
1051
+ "loss": 1.6228,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 2.7407407407407405,
1056
+ "grad_norm": 2.4614425382704352,
1057
+ "learning_rate": 1.1969596434867062e-06,
1058
+ "loss": 1.9709,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 2.7592592592592595,
1063
+ "grad_norm": 2.3445742482429788,
1064
+ "learning_rate": 1.186981823837961e-06,
1065
+ "loss": 2.0597,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 2.7777777777777777,
1070
+ "grad_norm": 1.6706837512637804,
1071
+ "learning_rate": 1.1769846765665992e-06,
1072
+ "loss": 1.6263,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 2.7962962962962963,
1077
+ "grad_norm": 1.6603060271536991,
1078
+ "learning_rate": 1.1669692350409222e-06,
1079
+ "loss": 1.8723,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 2.814814814814815,
1084
+ "grad_norm": 1.7552257393882156,
1085
+ "learning_rate": 1.1569365345202413e-06,
1086
+ "loss": 2.224,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 2.8333333333333335,
1091
+ "grad_norm": 1.3677514217091091,
1092
+ "learning_rate": 1.1468876120478662e-06,
1093
+ "loss": 1.897,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 2.851851851851852,
1098
+ "grad_norm": 1.4681588115995392,
1099
+ "learning_rate": 1.1368235063439102e-06,
1100
+ "loss": 1.7654,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 2.8703703703703702,
1105
+ "grad_norm": 1.4166676047405766,
1106
+ "learning_rate": 1.1267452576979218e-06,
1107
+ "loss": 1.7817,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 2.888888888888889,
1112
+ "grad_norm": 1.5999665116208726,
1113
+ "learning_rate": 1.1166539078613525e-06,
1114
+ "loss": 1.814,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 2.9074074074074074,
1119
+ "grad_norm": 1.8734358713251535,
1120
+ "learning_rate": 1.106550499939876e-06,
1121
+ "loss": 2.0783,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 2.925925925925926,
1126
+ "grad_norm": 1.7212322982329384,
1127
+ "learning_rate": 1.0964360782855666e-06,
1128
+ "loss": 2.0753,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 2.9444444444444446,
1133
+ "grad_norm": 2.144799198000555,
1134
+ "learning_rate": 1.086311688388946e-06,
1135
+ "loss": 1.8936,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 2.962962962962963,
1140
+ "grad_norm": 1.578076988317517,
1141
+ "learning_rate": 1.076178376770918e-06,
1142
+ "loss": 1.8926,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 2.9814814814814814,
1147
+ "grad_norm": 2.092387225323448,
1148
+ "learning_rate": 1.0660371908745908e-06,
1149
+ "loss": 1.8244,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 3.0,
1154
+ "grad_norm": 1.91051937209127,
1155
+ "learning_rate": 1.0558891789570082e-06,
1156
+ "loss": 1.8447,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 3.0185185185185186,
1161
+ "grad_norm": 2.011878655711519,
1162
+ "learning_rate": 1.0457353899807946e-06,
1163
+ "loss": 1.6429,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 3.0185185185185186,
1168
+ "grad_norm": 1.501437779159261,
1169
+ "learning_rate": 1.0355768735057273e-06,
1170
+ "loss": 1.8726,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 3.037037037037037,
1175
+ "grad_norm": 2.2762397392089597,
1176
+ "learning_rate": 1.0254146795802495e-06,
1177
+ "loss": 1.8501,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 3.0555555555555554,
1182
+ "grad_norm": 1.711019377794848,
1183
+ "learning_rate": 1.015249858632926e-06,
1184
+ "loss": 1.9443,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 3.074074074074074,
1189
+ "grad_norm": 2.1218173803583733,
1190
+ "learning_rate": 1.0050834613638694e-06,
1191
+ "loss": 1.5682,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 3.0925925925925926,
1196
+ "grad_norm": 2.2421674612074383,
1197
+ "learning_rate": 9.949165386361303e-07,
1198
+ "loss": 1.8014,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 3.111111111111111,
1203
+ "grad_norm": 2.0898372243057706,
1204
+ "learning_rate": 9.847501413670742e-07,
1205
+ "loss": 1.8711,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 3.1296296296296298,
1210
+ "grad_norm": 2.367436693252952,
1211
+ "learning_rate": 9.745853204197508e-07,
1212
+ "loss": 1.9004,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 3.148148148148148,
1217
+ "grad_norm": 1.756679866289546,
1218
+ "learning_rate": 9.644231264942724e-07,
1219
+ "loss": 1.8121,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 3.1666666666666665,
1224
+ "grad_norm": 1.8172318892802939,
1225
+ "learning_rate": 9.542646100192055e-07,
1226
+ "loss": 1.9013,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 3.185185185185185,
1231
+ "grad_norm": 1.7124997061951257,
1232
+ "learning_rate": 9.441108210429921e-07,
1233
+ "loss": 1.7851,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 3.2037037037037037,
1238
+ "grad_norm": 1.4438554381375786,
1239
+ "learning_rate": 9.339628091254091e-07,
1240
+ "loss": 1.5955,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 3.2222222222222223,
1245
+ "grad_norm": 1.4447841103018684,
1246
+ "learning_rate": 9.238216232290821e-07,
1247
+ "loss": 2.0907,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 3.240740740740741,
1252
+ "grad_norm": 1.6937928047736799,
1253
+ "learning_rate": 9.136883116110541e-07,
1254
+ "loss": 1.915,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 3.259259259259259,
1259
+ "grad_norm": 1.306322824987709,
1260
+ "learning_rate": 9.035639217144334e-07,
1261
+ "loss": 2.0679,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 3.2777777777777777,
1266
+ "grad_norm": 1.850877358174252,
1267
+ "learning_rate": 8.93449500060124e-07,
1268
+ "loss": 2.024,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 3.2962962962962963,
1273
+ "grad_norm": 1.5601775038920753,
1274
+ "learning_rate": 8.833460921386477e-07,
1275
+ "loss": 1.9335,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 3.314814814814815,
1280
+ "grad_norm": 2.270038996895677,
1281
+ "learning_rate": 8.732547423020784e-07,
1282
+ "loss": 2.3019,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 3.3333333333333335,
1287
+ "grad_norm": 1.3421300711986788,
1288
+ "learning_rate": 8.631764936560899e-07,
1289
+ "loss": 1.8503,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 3.351851851851852,
1294
+ "grad_norm": 2.071755001265988,
1295
+ "learning_rate": 8.53112387952134e-07,
1296
+ "loss": 1.838,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 3.3703703703703702,
1301
+ "grad_norm": 1.6174575169544287,
1302
+ "learning_rate": 8.430634654797588e-07,
1303
+ "loss": 2.2364,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 3.388888888888889,
1308
+ "grad_norm": 1.801580774474325,
1309
+ "learning_rate": 8.330307649590779e-07,
1310
+ "loss": 1.7633,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 3.4074074074074074,
1315
+ "grad_norm": 2.058657705709402,
1316
+ "learning_rate": 8.230153234334007e-07,
1317
+ "loss": 2.2177,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 3.425925925925926,
1322
+ "grad_norm": 1.5267427939756337,
1323
+ "learning_rate": 8.130181761620392e-07,
1324
+ "loss": 1.8588,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 3.4444444444444446,
1329
+ "grad_norm": 1.8491296560891988,
1330
+ "learning_rate": 8.030403565132942e-07,
1331
+ "loss": 2.0561,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 3.462962962962963,
1336
+ "grad_norm": 1.1987453530026493,
1337
+ "learning_rate": 7.930828958576417e-07,
1338
+ "loss": 2.0565,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 3.4814814814814814,
1343
+ "grad_norm": 1.7195298906541316,
1344
+ "learning_rate": 7.831468234611247e-07,
1345
+ "loss": 2.0798,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 3.5,
1350
+ "grad_norm": 1.20797833272688,
1351
+ "learning_rate": 7.73233166378959e-07,
1352
+ "loss": 1.8627,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 3.5185185185185186,
1357
+ "grad_norm": 1.5640684128902402,
1358
+ "learning_rate": 7.633429493493729e-07,
1359
+ "loss": 2.0137,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 3.537037037037037,
1364
+ "grad_norm": 1.6824510280578688,
1365
+ "learning_rate": 7.53477194687683e-07,
1366
+ "loss": 2.1517,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 3.5555555555555554,
1371
+ "grad_norm": 1.4155640553151332,
1372
+ "learning_rate": 7.4363692218062e-07,
1373
+ "loss": 1.9426,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 3.574074074074074,
1378
+ "grad_norm": 1.3939742232946681,
1379
+ "learning_rate": 7.338231489809182e-07,
1380
+ "loss": 1.7207,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 3.5925925925925926,
1385
+ "grad_norm": 1.4589160544776356,
1386
+ "learning_rate": 7.240368895021775e-07,
1387
+ "loss": 1.8217,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 3.611111111111111,
1392
+ "grad_norm": 1.3991775241667967,
1393
+ "learning_rate": 7.142791553140044e-07,
1394
+ "loss": 1.9021,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 3.6296296296296298,
1399
+ "grad_norm": 1.5300112446112555,
1400
+ "learning_rate": 7.045509550374509e-07,
1401
+ "loss": 1.9647,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 3.648148148148148,
1406
+ "grad_norm": 1.449273309005635,
1407
+ "learning_rate": 6.948532942407587e-07,
1408
+ "loss": 1.9613,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 3.6666666666666665,
1413
+ "grad_norm": 1.069899380500529,
1414
+ "learning_rate": 6.851871753354153e-07,
1415
+ "loss": 1.7452,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 3.685185185185185,
1420
+ "grad_norm": 1.5579308530316032,
1421
+ "learning_rate": 6.755535974725379e-07,
1422
+ "loss": 1.9134,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 3.7037037037037037,
1427
+ "grad_norm": 1.0814459794670248,
1428
+ "learning_rate": 6.659535564395982e-07,
1429
+ "loss": 1.6609,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 3.7222222222222223,
1434
+ "grad_norm": 1.8876967693657951,
1435
+ "learning_rate": 6.563880445574872e-07,
1436
+ "loss": 2.0948,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 3.7407407407407405,
1441
+ "grad_norm": 1.6093595543167938,
1442
+ "learning_rate": 6.468580505779455e-07,
1443
+ "loss": 1.6327,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 3.7592592592592595,
1448
+ "grad_norm": 1.9559640817344714,
1449
+ "learning_rate": 6.373645595813596e-07,
1450
+ "loss": 1.6376,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 3.7777777777777777,
1455
+ "grad_norm": 2.0405778845643288,
1456
+ "learning_rate": 6.27908552874936e-07,
1457
+ "loss": 2.1409,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 3.7962962962962963,
1462
+ "grad_norm": 1.230340254163767,
1463
+ "learning_rate": 6.184910078912686e-07,
1464
+ "loss": 1.686,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 3.814814814814815,
1469
+ "grad_norm": 2.171420345125834,
1470
+ "learning_rate": 6.091128980873045e-07,
1471
+ "loss": 1.9347,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 3.8333333333333335,
1476
+ "grad_norm": 1.8008532771859842,
1477
+ "learning_rate": 5.997751928437219e-07,
1478
+ "loss": 2.1292,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 3.851851851851852,
1483
+ "grad_norm": 1.502892647903443,
1484
+ "learning_rate": 5.904788573647282e-07,
1485
+ "loss": 1.7302,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 3.8703703703703702,
1490
+ "grad_norm": 1.4720170454603325,
1491
+ "learning_rate": 5.812248525782901e-07,
1492
+ "loss": 1.6652,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 3.888888888888889,
1497
+ "grad_norm": 1.4078435809618528,
1498
+ "learning_rate": 5.720141350368072e-07,
1499
+ "loss": 1.7847,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 3.9074074074074074,
1504
+ "grad_norm": 1.2860107867972834,
1505
+ "learning_rate": 5.628476568182349e-07,
1506
+ "loss": 1.818,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 3.925925925925926,
1511
+ "grad_norm": 1.5761560916907795,
1512
+ "learning_rate": 5.537263654276743e-07,
1513
+ "loss": 1.787,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 3.9444444444444446,
1518
+ "grad_norm": 1.463921943518727,
1519
+ "learning_rate": 5.446512036994286e-07,
1520
+ "loss": 1.9223,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 3.962962962962963,
1525
+ "grad_norm": 1.2770391505323755,
1526
+ "learning_rate": 5.356231096995499e-07,
1527
+ "loss": 1.5593,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 3.9814814814814814,
1532
+ "grad_norm": 1.4711865688844035,
1533
+ "learning_rate": 5.266430166288704e-07,
1534
+ "loss": 2.0863,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 4.0,
1539
+ "grad_norm": 1.1447313661292717,
1540
+ "learning_rate": 5.177118527265437e-07,
1541
+ "loss": 1.9428,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 4.018518518518519,
1546
+ "grad_norm": 1.6196943319397998,
1547
+ "learning_rate": 5.088305411740965e-07,
1548
+ "loss": 2.2068,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 4.018518518518518,
1553
+ "grad_norm": 1.2766493962889875,
1554
+ "learning_rate": 5.000000000000002e-07,
1555
+ "loss": 1.7437,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 4.037037037037037,
1560
+ "grad_norm": 1.594306405599087,
1561
+ "learning_rate": 4.912211419847793e-07,
1562
+ "loss": 2.0219,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 4.055555555555555,
1567
+ "grad_norm": 1.227716475966799,
1568
+ "learning_rate": 4.82494874566662e-07,
1569
+ "loss": 2.187,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 4.074074074074074,
1574
+ "grad_norm": 1.2852396998354376,
1575
+ "learning_rate": 4.738220997477784e-07,
1576
+ "loss": 1.8363,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 4.092592592592593,
1581
+ "grad_norm": 1.0923893050000644,
1582
+ "learning_rate": 4.6520371400092584e-07,
1583
+ "loss": 1.7177,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 4.111111111111111,
1588
+ "grad_norm": 1.1495819987216884,
1589
+ "learning_rate": 4.5664060817690476e-07,
1590
+ "loss": 2.0734,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 4.12962962962963,
1595
+ "grad_norm": 1.1120083230916684,
1596
+ "learning_rate": 4.481336674124323e-07,
1597
+ "loss": 1.7847,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 4.148148148148148,
1602
+ "grad_norm": 0.9789098979808262,
1603
+ "learning_rate": 4.3968377103865016e-07,
1604
+ "loss": 1.7989,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 4.166666666666667,
1609
+ "grad_norm": 0.9342477457439083,
1610
+ "learning_rate": 4.3129179249023274e-07,
1611
+ "loss": 1.6785,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 4.185185185185185,
1616
+ "grad_norm": 1.0718449337061247,
1617
+ "learning_rate": 4.229585992151006e-07,
1618
+ "loss": 1.7953,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 4.203703703703703,
1623
+ "grad_norm": 1.1500516991492213,
1624
+ "learning_rate": 4.1468505258475784e-07,
1625
+ "loss": 1.3975,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 4.222222222222222,
1630
+ "grad_norm": 0.9650831232767911,
1631
+ "learning_rate": 4.0647200780525483e-07,
1632
+ "loss": 1.8603,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 4.2407407407407405,
1637
+ "grad_norm": 1.0207088687244406,
1638
+ "learning_rate": 3.983203138287876e-07,
1639
+ "loss": 1.9807,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 4.2592592592592595,
1644
+ "grad_norm": 1.1991752171611891,
1645
+ "learning_rate": 3.9023081326594564e-07,
1646
+ "loss": 2.2322,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 4.277777777777778,
1651
+ "grad_norm": 1.0807801212200088,
1652
+ "learning_rate": 3.822043422986153e-07,
1653
+ "loss": 1.6295,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 4.296296296296296,
1658
+ "grad_norm": 1.0103392155699495,
1659
+ "learning_rate": 3.742417305935442e-07,
1660
+ "loss": 1.7882,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 4.314814814814815,
1665
+ "grad_norm": 1.0657639750720669,
1666
+ "learning_rate": 3.663438012165848e-07,
1667
+ "loss": 1.6027,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 4.333333333333333,
1672
+ "grad_norm": 0.9495451533397854,
1673
+ "learning_rate": 3.5851137054761426e-07,
1674
+ "loss": 1.8212,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 4.351851851851852,
1679
+ "grad_norm": 1.0780389016215326,
1680
+ "learning_rate": 3.507452481961495e-07,
1681
+ "loss": 1.6304,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 4.37037037037037,
1686
+ "grad_norm": 1.0244203325558825,
1687
+ "learning_rate": 3.430462369176619e-07,
1688
+ "loss": 1.9347,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 4.388888888888889,
1693
+ "grad_norm": 0.9762810523750869,
1694
+ "learning_rate": 3.3541513253059726e-07,
1695
+ "loss": 2.0351,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 4.407407407407407,
1700
+ "grad_norm": 0.8894982063199672,
1701
+ "learning_rate": 3.278527238341163e-07,
1702
+ "loss": 1.7788,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 4.425925925925926,
1707
+ "grad_norm": 0.9573443483478868,
1708
+ "learning_rate": 3.2035979252655976e-07,
1709
+ "loss": 1.6824,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 4.444444444444445,
1714
+ "grad_norm": 0.878347387417952,
1715
+ "learning_rate": 3.129371131246459e-07,
1716
+ "loss": 1.7893,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 4.462962962962963,
1721
+ "grad_norm": 1.2131347174643223,
1722
+ "learning_rate": 3.05585452883412e-07,
1723
+ "loss": 2.4755,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 4.481481481481482,
1728
+ "grad_norm": 0.9278993006726863,
1729
+ "learning_rate": 2.9830557171690693e-07,
1730
+ "loss": 2.051,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 4.5,
1735
+ "grad_norm": 0.9769923688632531,
1736
+ "learning_rate": 2.910982221196404e-07,
1737
+ "loss": 1.8307,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 4.518518518518518,
1742
+ "grad_norm": 1.0084007217465136,
1743
+ "learning_rate": 2.8396414908880095e-07,
1744
+ "loss": 2.0386,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 4.537037037037037,
1749
+ "grad_norm": 1.0273787706173494,
1750
+ "learning_rate": 2.769040900472488e-07,
1751
+ "loss": 1.9072,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 4.555555555555555,
1756
+ "grad_norm": 0.8621559648712259,
1757
+ "learning_rate": 2.6991877476728985e-07,
1758
+ "loss": 1.706,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 4.574074074074074,
1763
+ "grad_norm": 0.8247377172080764,
1764
+ "learning_rate": 2.6300892529524264e-07,
1765
+ "loss": 1.8414,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 4.592592592592593,
1770
+ "grad_norm": 0.8925073470001154,
1771
+ "learning_rate": 2.56175255876804e-07,
1772
+ "loss": 1.9007,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 4.611111111111111,
1777
+ "grad_norm": 0.7860274094152706,
1778
+ "learning_rate": 2.494184728832179e-07,
1779
+ "loss": 1.8654,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 4.62962962962963,
1784
+ "grad_norm": 0.8936613069940655,
1785
+ "learning_rate": 2.427392747382623e-07,
1786
+ "loss": 1.6996,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 4.648148148148148,
1791
+ "grad_norm": 1.0827181264619206,
1792
+ "learning_rate": 2.3613835184605523e-07,
1793
+ "loss": 1.9413,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 4.666666666666667,
1798
+ "grad_norm": 0.8918696543620299,
1799
+ "learning_rate": 2.2961638651968974e-07,
1800
+ "loss": 1.856,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 4.685185185185185,
1805
+ "grad_norm": 0.9976782397503938,
1806
+ "learning_rate": 2.2317405291070567e-07,
1807
+ "loss": 1.8228,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 4.703703703703704,
1812
+ "grad_norm": 1.021922767232776,
1813
+ "learning_rate": 2.1681201693940666e-07,
1814
+ "loss": 2.0057,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 4.722222222222222,
1819
+ "grad_norm": 1.1673943142630625,
1820
+ "learning_rate": 2.1053093622602402e-07,
1821
+ "loss": 1.9204,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 4.7407407407407405,
1826
+ "grad_norm": 1.0912049168909328,
1827
+ "learning_rate": 2.043314600227425e-07,
1828
+ "loss": 1.8173,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 4.7592592592592595,
1833
+ "grad_norm": 0.9358084522077252,
1834
+ "learning_rate": 1.9821422914658957e-07,
1835
+ "loss": 2.0846,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 4.777777777777778,
1840
+ "grad_norm": 1.0481784665647413,
1841
+ "learning_rate": 1.921798759131953e-07,
1842
+ "loss": 1.9789,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 4.796296296296296,
1847
+ "grad_norm": 0.983048254792995,
1848
+ "learning_rate": 1.8622902407143392e-07,
1849
+ "loss": 1.9294,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 4.814814814814815,
1854
+ "grad_norm": 0.8359638487960833,
1855
+ "learning_rate": 1.8036228873894744e-07,
1856
+ "loss": 1.7806,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 4.833333333333333,
1861
+ "grad_norm": 1.1295927764034195,
1862
+ "learning_rate": 1.7458027633856475e-07,
1863
+ "loss": 1.9495,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 4.851851851851852,
1868
+ "grad_norm": 1.1032897990848558,
1869
+ "learning_rate": 1.6888358453561646e-07,
1870
+ "loss": 2.0724,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 4.87037037037037,
1875
+ "grad_norm": 0.855002738874884,
1876
+ "learning_rate": 1.632728021761579e-07,
1877
+ "loss": 2.102,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 4.888888888888889,
1882
+ "grad_norm": 1.0646161730662291,
1883
+ "learning_rate": 1.5774850922610116e-07,
1884
+ "loss": 1.9046,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 4.907407407407407,
1889
+ "grad_norm": 1.0109654313968932,
1890
+ "learning_rate": 1.5231127671126676e-07,
1891
+ "loss": 2.0854,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 4.925925925925926,
1896
+ "grad_norm": 0.9390534047671891,
1897
+ "learning_rate": 1.4696166665835852e-07,
1898
+ "loss": 2.1436,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 4.944444444444445,
1903
+ "grad_norm": 0.9838446669064714,
1904
+ "learning_rate": 1.4170023203686875e-07,
1905
+ "loss": 1.9317,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 4.962962962962963,
1910
+ "grad_norm": 1.0678273880700424,
1911
+ "learning_rate": 1.3652751670192075e-07,
1912
+ "loss": 1.8309,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 4.981481481481482,
1917
+ "grad_norm": 1.1853311551704062,
1918
+ "learning_rate": 1.3144405533805136e-07,
1919
+ "loss": 1.948,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 5.0,
1924
+ "grad_norm": 1.0844767215232378,
1925
+ "learning_rate": 1.2645037340394281e-07,
1926
+ "loss": 2.1066,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 5.018518518518518,
1931
+ "grad_norm": 0.8509695959322425,
1932
+ "learning_rate": 1.2154698707810928e-07,
1933
+ "loss": 1.9217,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 5.037037037037037,
1938
+ "grad_norm": 0.9599815386335595,
1939
+ "learning_rate": 1.167344032055394e-07,
1940
+ "loss": 1.9898,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 5.055555555555555,
1945
+ "grad_norm": 0.9561022219351966,
1946
+ "learning_rate": 1.1201311924530688e-07,
1947
+ "loss": 1.6967,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 5.074074074074074,
1952
+ "grad_norm": 0.8614534074294055,
1953
+ "learning_rate": 1.0738362321914995e-07,
1954
+ "loss": 1.7586,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 5.092592592592593,
1959
+ "grad_norm": 0.884706815883145,
1960
+ "learning_rate": 1.0284639366102598e-07,
1961
+ "loss": 1.8692,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 5.111111111111111,
1966
+ "grad_norm": 0.8641496604329509,
1967
+ "learning_rate": 9.840189956764677e-08,
1968
+ "loss": 2.1101,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 5.12962962962963,
1973
+ "grad_norm": 0.8465414034017087,
1974
+ "learning_rate": 9.405060035000134e-08,
1975
+ "loss": 1.7827,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 5.148148148148148,
1980
+ "grad_norm": 0.6966794157650356,
1981
+ "learning_rate": 8.979294578586738e-08,
1982
+ "loss": 1.6446,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 5.166666666666667,
1987
+ "grad_norm": 0.8581271311276034,
1988
+ "learning_rate": 8.562937597331898e-08,
1989
+ "loss": 1.7243,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 5.185185185185185,
1994
+ "grad_norm": 0.9976947326325505,
1995
+ "learning_rate": 8.156032128523694e-08,
1996
+ "loss": 1.8994,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 5.203703703703703,
2001
+ "grad_norm": 0.9786757162446749,
2002
+ "learning_rate": 7.758620232482083e-08,
2003
+ "loss": 1.8625,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 5.222222222222222,
2008
+ "grad_norm": 0.7563393752170862,
2009
+ "learning_rate": 7.370742988211364e-08,
2010
+ "loss": 1.7512,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 5.2407407407407405,
2015
+ "grad_norm": 0.7955178168012043,
2016
+ "learning_rate": 6.99244048915405e-08,
2017
+ "loss": 2.2105,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 5.2592592592592595,
2022
+ "grad_norm": 0.8951178929520269,
2023
+ "learning_rate": 6.623751839046455e-08,
2024
+ "loss": 1.8276,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 5.277777777777778,
2029
+ "grad_norm": 0.9912120605663316,
2030
+ "learning_rate": 6.264715147876742e-08,
2031
+ "loss": 2.2784,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 5.296296296296296,
2036
+ "grad_norm": 0.759976000502015,
2037
+ "learning_rate": 5.915367527945614e-08,
2038
+ "loss": 1.9346,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 5.314814814814815,
2043
+ "grad_norm": 0.7423091105639062,
2044
+ "learning_rate": 5.575745090030137e-08,
2045
+ "loss": 1.8795,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 5.333333333333333,
2050
+ "grad_norm": 0.7811530255930925,
2051
+ "learning_rate": 5.245882939651181e-08,
2052
+ "loss": 2.0584,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 5.351851851851852,
2057
+ "grad_norm": 0.9202352755672565,
2058
+ "learning_rate": 4.9258151734445694e-08,
2059
+ "loss": 2.0563,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 5.37037037037037,
2064
+ "grad_norm": 0.7972657702760176,
2065
+ "learning_rate": 4.6155748756367294e-08,
2066
+ "loss": 1.8333,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 5.388888888888889,
2071
+ "grad_norm": 0.6829451582697305,
2072
+ "learning_rate": 4.3151941146248873e-08,
2073
+ "loss": 1.9896,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 5.407407407407407,
2078
+ "grad_norm": 0.7886670762082094,
2079
+ "learning_rate": 4.0247039396622e-08,
2080
+ "loss": 1.8183,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 5.425925925925926,
2085
+ "grad_norm": 0.8840244220041553,
2086
+ "learning_rate": 3.7441343776484113e-08,
2087
+ "loss": 1.9354,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 5.444444444444445,
2092
+ "grad_norm": 0.71587738270711,
2093
+ "learning_rate": 3.4735144300260255e-08,
2094
+ "loss": 2.0167,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 5.462962962962963,
2099
+ "grad_norm": 0.7108094024246895,
2100
+ "learning_rate": 3.212872069782513e-08,
2101
+ "loss": 1.7169,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 5.481481481481482,
2106
+ "grad_norm": 0.6662930242485889,
2107
+ "learning_rate": 2.962234238558925e-08,
2108
+ "loss": 2.2062,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 5.5,
2113
+ "grad_norm": 0.7122621954506775,
2114
+ "learning_rate": 2.721626843864977e-08,
2115
+ "loss": 2.0591,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 5.518518518518518,
2120
+ "grad_norm": 0.626318180659774,
2121
+ "learning_rate": 2.491074756401068e-08,
2122
+ "loss": 1.5866,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 5.537037037037037,
2127
+ "grad_norm": 0.6909592708288532,
2128
+ "learning_rate": 2.2706018074875043e-08,
2129
+ "loss": 1.9005,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 5.555555555555555,
2134
+ "grad_norm": 0.7144569439769612,
2135
+ "learning_rate": 2.0602307866012246e-08,
2136
+ "loss": 2.0294,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 5.574074074074074,
2141
+ "grad_norm": 0.684647174393133,
2142
+ "learning_rate": 1.8599834390199853e-08,
2143
+ "loss": 1.6046,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 5.592592592592593,
2148
+ "grad_norm": 0.7752801436279185,
2149
+ "learning_rate": 1.6698804635747576e-08,
2150
+ "loss": 1.7937,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 5.611111111111111,
2155
+ "grad_norm": 0.6862611972609113,
2156
+ "learning_rate": 1.4899415105101066e-08,
2157
+ "loss": 1.7256,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 5.62962962962963,
2162
+ "grad_norm": 0.6608135193001434,
2163
+ "learning_rate": 1.3201851794530371e-08,
2164
+ "loss": 1.7763,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 5.648148148148148,
2169
+ "grad_norm": 0.7625095579861546,
2170
+ "learning_rate": 1.1606290174903888e-08,
2171
+ "loss": 2.0082,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 5.666666666666667,
2176
+ "grad_norm": 0.6914220267730987,
2177
+ "learning_rate": 1.0112895173551183e-08,
2178
+ "loss": 1.9359,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 5.685185185185185,
2183
+ "grad_norm": 0.6505975431309626,
2184
+ "learning_rate": 8.721821157214316e-09,
2185
+ "loss": 1.9317,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 5.703703703703704,
2190
+ "grad_norm": 0.6947915176450158,
2191
+ "learning_rate": 7.433211916092141e-09,
2192
+ "loss": 1.6243,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 5.722222222222222,
2197
+ "grad_norm": 0.6360099423433963,
2198
+ "learning_rate": 6.247200648976991e-09,
2199
+ "loss": 1.9931,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 5.7407407407407405,
2204
+ "grad_norm": 0.6796797146249973,
2205
+ "learning_rate": 5.163909949486233e-09,
2206
+ "loss": 1.9858,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 5.7592592592592595,
2211
+ "grad_norm": 0.7636965994787633,
2212
+ "learning_rate": 4.183451793390747e-09,
2213
+ "loss": 1.8201,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 5.777777777777778,
2218
+ "grad_norm": 0.6434704456483539,
2219
+ "learning_rate": 3.30592752703962e-09,
2220
+ "loss": 1.5983,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 5.796296296296296,
2225
+ "grad_norm": 0.6697682736960676,
2226
+ "learning_rate": 2.531427856885093e-09,
2227
+ "loss": 1.985,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 5.814814814814815,
2232
+ "grad_norm": 0.657234650874368,
2233
+ "learning_rate": 1.8600328401061627e-09,
2234
+ "loss": 2.0918,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 5.833333333333333,
2239
+ "grad_norm": 0.6249721935624161,
2240
+ "learning_rate": 1.2918118763335372e-09,
2241
+ "loss": 2.1123,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 5.851851851851852,
2246
+ "grad_norm": 0.7274585554347512,
2247
+ "learning_rate": 8.268237004757095e-10,
2248
+ "loss": 2.2962,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 5.87037037037037,
2253
+ "grad_norm": 0.6060864357328691,
2254
+ "learning_rate": 4.651163766484778e-10,
2255
+ "loss": 1.6461,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 5.888888888888889,
2260
+ "grad_norm": 0.6626618247650778,
2261
+ "learning_rate": 2.0672729320581063e-10,
2262
+ "loss": 2.0178,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 5.907407407407407,
2267
+ "grad_norm": 0.5905608542721459,
2268
+ "learning_rate": 5.1683158875936994e-11,
2269
+ "loss": 1.7269,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 5.925925925925926,
2274
+ "grad_norm": 0.7138681736753105,
2275
+ "learning_rate": 0.0,
2276
+ "loss": 2.11,
2277
+ "step": 324
2278
+ }
2279
+ ],
2280
+ "logging_steps": 1,
2281
+ "max_steps": 324,
2282
+ "num_input_tokens_seen": 0,
2283
+ "num_train_epochs": 6,
2284
+ "save_steps": 54,
2285
+ "stateful_callbacks": {
2286
+ "TrainerControl": {
2287
+ "args": {
2288
+ "should_epoch_stop": false,
2289
+ "should_evaluate": false,
2290
+ "should_log": false,
2291
+ "should_save": true,
2292
+ "should_training_stop": true
2293
+ },
2294
+ "attributes": {}
2295
+ }
2296
+ },
2297
+ "total_flos": 128024720179200.0,
2298
+ "train_batch_size": 8,
2299
+ "trial_name": null,
2300
+ "trial_params": null
2301
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:444f31a52dc244c723586aec7f0e2f3b527599a865d311708a904c42d249ef10
3
+ size 8248
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)