--- license: mit base_model: nielsr/lilt-xlm-roberta-base tags: - generated_from_trainer datasets: - xfun metrics: - precision - recall - f1 - accuracy model-index: - name: LiLT-SER-PT results: - task: name: Token Classification type: token-classification dataset: name: xfun type: xfun config: xfun.pt split: validation args: xfun.pt metrics: - name: Precision type: precision value: 0.6997755331088664 - name: Recall type: recall value: 0.7550711474417197 - name: F1 type: f1 value: 0.72637250618902 - name: Accuracy type: accuracy value: 0.7709534665415047 --- # LiLT-SER-PT This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on the xfun dataset. It achieves the following results on the evaluation set: - Loss: 2.1403 - Precision: 0.6998 - Recall: 0.7551 - F1: 0.7264 - Accuracy: 0.7710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:------:|:-----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.0838 | 8.47 | 500 | 0.7697 | 0.6542 | 1.0006 | 0.6081 | 0.7078 | | 0.0366 | 16.95 | 1000 | 0.7606 | 0.6795 | 1.4063 | 0.6533 | 0.7078 | | 0.0173 | 25.42 | 1500 | 0.7848 | 0.7047 | 1.4681 | 0.6752 | 0.7369 | | 0.0036 | 33.9 | 2000 | 0.7706 | 0.7003 | 1.6267 | 0.6577 | 0.7487 | | 0.0023 | 42.37 | 2500 | 1.6728 | 0.6839 | 0.7172 | 0.7002 | 0.7698 | | 0.0001 | 50.85 | 3000 | 1.6210 | 0.6742 | 0.7493 | 0.7098 | 0.7941 | | 0.0001 | 59.32 | 3500 | 1.6883 | 0.6962 | 0.7505 | 0.7223 | 0.7929 | | 0.0007 | 67.8 | 4000 | 1.8709 | 0.6730 | 0.7590 | 0.7134 | 0.7811 | | 0.0003 | 76.27 | 4500 | 1.9387 | 0.6884 | 0.7151 | 0.7015 | 0.7690 | | 0.0034 | 84.75 | 5000 | 1.8042 | 0.6927 | 0.7554 | 0.7227 | 0.7787 | | 0.0 | 93.22 | 5500 | 2.0395 | 0.6954 | 0.7596 | 0.7261 | 0.7527 | | 0.0003 | 101.69 | 6000 | 1.9295 | 0.6861 | 0.7511 | 0.7172 | 0.7790 | | 0.0001 | 110.17 | 6500 | 1.9690 | 0.6813 | 0.7611 | 0.7190 | 0.7694 | | 0.0 | 118.64 | 7000 | 1.9217 | 0.6974 | 0.7520 | 0.7237 | 0.7754 | | 0.0001 | 127.12 | 7500 | 2.0703 | 0.6885 | 0.7536 | 0.7196 | 0.7694 | | 0.0002 | 135.59 | 8000 | 2.0438 | 0.6915 | 0.7635 | 0.7258 | 0.7770 | | 0.0 | 144.07 | 8500 | 2.0429 | 0.6980 | 0.7599 | 0.7276 | 0.7782 | | 0.0 | 152.54 | 9000 | 2.1403 | 0.6998 | 0.7551 | 0.7264 | 0.7710 | | 0.0 | 161.02 | 9500 | 2.1786 | 0.6986 | 0.7578 | 0.7270 | 0.7726 | | 0.0 | 169.49 | 10000 | 2.1782 | 0.6965 | 0.7560 | 0.7250 | 0.7721 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1