--- license: apache-2.0 tags: - tabular-regression - finance - settlement-fails --- # Fails-Forecasting v1 (XGBoost + LightGBM) Predicts next-day settlement-fail notional for US Treasuries & corporates. | metric | value | |--------|-------| | MAE | **4.2 bn** | | RMSE | 5.8 bn | ## Files * `xgb_next_day_fails_model.joblib` – point prediction * `lgb_quantile90_next_day_fails.joblib` – 90-percentile upper-bound Streaming Fail-Forecaster: training & inference flow Trained on FINRA FTD + TRACE (2009-2025). **Usage** ```python import joblib, lightgbm as lgb, pandas as pd xgb = joblib.load("xgb_next_day_fails_model.joblib") lgbm = lgb.Booster(model_file="lgb_quantile90_next_day_fails.txt") y_hat = xgb.predict(X_new) y_q90 = lgbm.predict(X_new) alert = y_hat > y_q90 ``` ## Citation > Musodza, K. (2025). Bond Settlement Automated Exception Handling and Reconciliation. Zenodo. https://doi.org/10.5281/zenodo.16828730 > > ➡️ Technical white-paper & notebooks: https://github.com/Coreledger-tech/Exception-handling-reconciliation.git