add custom handler
Browse files- __pycache__/handler.cpython-38.pyc +0 -0
- handler.py +4 -5
__pycache__/handler.cpython-38.pyc
CHANGED
Binary files a/__pycache__/handler.cpython-38.pyc and b/__pycache__/handler.cpython-38.pyc differ
|
|
handler.py
CHANGED
@@ -56,18 +56,17 @@ class EndpointHandler():
|
|
56 |
def __call__(self, data: Dict[str, Any]) -> str:
|
57 |
# get inputs
|
58 |
tmp_data = data.pop("inputs", data)
|
|
|
59 |
|
60 |
context = base64.b64decode(tmp_data[0])
|
61 |
context = np.frombuffer(context, dtype="float32")
|
62 |
-
context = np.reshape(context, (
|
63 |
|
64 |
unconditional_context = base64.b64decode(tmp_data[1])
|
65 |
unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
|
66 |
-
unconditional_context = np.reshape(unconditional_context, (
|
67 |
-
|
68 |
-
batch_size = data.pop("batch_size", 1)
|
69 |
|
70 |
-
num_steps = data.pop("num_steps",
|
71 |
unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
|
72 |
|
73 |
latent = self._get_initial_diffusion_noise(batch_size, self.seed)
|
|
|
56 |
def __call__(self, data: Dict[str, Any]) -> str:
|
57 |
# get inputs
|
58 |
tmp_data = data.pop("inputs", data)
|
59 |
+
batch_size = data.pop("batch_size", 1)
|
60 |
|
61 |
context = base64.b64decode(tmp_data[0])
|
62 |
context = np.frombuffer(context, dtype="float32")
|
63 |
+
context = np.reshape(context, (batch_size, 77, 768))
|
64 |
|
65 |
unconditional_context = base64.b64decode(tmp_data[1])
|
66 |
unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
|
67 |
+
unconditional_context = np.reshape(unconditional_context, (batch_size, 77, 768))
|
|
|
|
|
68 |
|
69 |
+
num_steps = data.pop("num_steps", 25)
|
70 |
unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
|
71 |
|
72 |
latent = self._get_initial_diffusion_noise(batch_size, self.seed)
|