File size: 14,307 Bytes
aae13dc 2143543 aae13dc 2143543 aae13dc 2143543 aae13dc 2143543 aae13dc 2143543 aae13dc 2143543 aae13dc 2143543 aae13dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
from typing import Dict, List, Any
import sys
import base64
import math
import numpy as np
import tensorflow as tf
from tensorflow import keras
from keras_cv.models.stable_diffusion.constants import _ALPHAS_CUMPROD
from keras_cv.models.stable_diffusion.diffusion_model import DiffusionModel
from keras_cv.models.stable_diffusion.diffusion_model import DiffusionModelV2
class GroupNormalization(tf.keras.layers.Layer):
"""GroupNormalization layer.
This layer is only here temporarily and will be removed
as we introduce GroupNormalization in core Keras.
"""
def __init__(
self,
groups=32,
axis=-1,
epsilon=1e-5,
**kwargs,
):
super().__init__(**kwargs)
self.groups = groups
self.axis = axis
self.epsilon = epsilon
def build(self, input_shape):
dim = input_shape[self.axis]
self.gamma = self.add_weight(
shape=(dim,),
name="gamma",
initializer="ones",
)
self.beta = self.add_weight(
shape=(dim,),
name="beta",
initializer="zeros",
)
def call(self, inputs):
input_shape = tf.shape(inputs)
reshaped_inputs = self._reshape_into_groups(inputs, input_shape)
normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape)
return tf.reshape(normalized_inputs, input_shape)
def _reshape_into_groups(self, inputs, input_shape):
group_shape = [input_shape[i] for i in range(inputs.shape.rank)]
group_shape[self.axis] = input_shape[self.axis] // self.groups
group_shape.insert(self.axis, self.groups)
group_shape = tf.stack(group_shape)
return tf.reshape(inputs, group_shape)
def _apply_normalization(self, reshaped_inputs, input_shape):
group_reduction_axes = list(range(1, reshaped_inputs.shape.rank))
axis = -2 if self.axis == -1 else self.axis - 1
group_reduction_axes.pop(axis)
mean, variance = tf.nn.moments(
reshaped_inputs, group_reduction_axes, keepdims=True
)
gamma, beta = self._get_reshaped_weights(input_shape)
return tf.nn.batch_normalization(
reshaped_inputs,
mean=mean,
variance=variance,
scale=gamma,
offset=beta,
variance_epsilon=self.epsilon,
)
def _get_reshaped_weights(self, input_shape):
broadcast_shape = self._create_broadcast_shape(input_shape)
gamma = tf.reshape(self.gamma, broadcast_shape)
beta = tf.reshape(self.beta, broadcast_shape)
return gamma, beta
def _create_broadcast_shape(self, input_shape):
broadcast_shape = [1] * input_shape.shape.rank
broadcast_shape[self.axis] = input_shape[self.axis] // self.groups
broadcast_shape.insert(self.axis, self.groups)
return broadcast_shape
class PaddedConv2D(keras.layers.Layer):
def __init__(self, filters, kernel_size, padding=0, strides=1, **kwargs):
super().__init__(**kwargs)
self.padding2d = keras.layers.ZeroPadding2D(padding)
self.conv2d = keras.layers.Conv2D(filters, kernel_size, strides=strides)
def call(self, inputs):
x = self.padding2d(inputs)
return self.conv2d(x)
class AttentionBlock(keras.layers.Layer):
def __init__(self, output_dim, **kwargs):
super().__init__(**kwargs)
self.output_dim = output_dim
self.norm = GroupNormalization(epsilon=1e-5)
self.q = PaddedConv2D(output_dim, 1)
self.k = PaddedConv2D(output_dim, 1)
self.v = PaddedConv2D(output_dim, 1)
self.proj_out = PaddedConv2D(output_dim, 1)
def call(self, inputs):
x = self.norm(inputs)
q, k, v = self.q(x), self.k(x), self.v(x)
# Compute attention
_, h, w, c = q.shape
q = tf.reshape(q, (-1, h * w, c)) # b, hw, c
k = tf.transpose(k, (0, 3, 1, 2))
k = tf.reshape(k, (-1, c, h * w)) # b, c, hw
y = q @ k
y = y * (c**-0.5)
y = keras.activations.softmax(y)
# Attend to values
v = tf.transpose(v, (0, 3, 1, 2))
v = tf.reshape(v, (-1, c, h * w))
y = tf.transpose(y, (0, 2, 1))
x = v @ y
x = tf.transpose(x, (0, 2, 1))
x = tf.reshape(x, (-1, h, w, c))
return self.proj_out(x) + inputs
class ResnetBlock(keras.layers.Layer):
def __init__(self, output_dim, **kwargs):
super().__init__(**kwargs)
self.output_dim = output_dim
self.norm1 = GroupNormalization(epsilon=1e-5)
self.conv1 = PaddedConv2D(output_dim, 3, padding=1)
self.norm2 = GroupNormalization(epsilon=1e-5)
self.conv2 = PaddedConv2D(output_dim, 3, padding=1)
def build(self, input_shape):
if input_shape[-1] != self.output_dim:
self.residual_projection = PaddedConv2D(self.output_dim, 1)
else:
self.residual_projection = lambda x: x
def call(self, inputs):
x = self.conv1(keras.activations.swish(self.norm1(inputs)))
x = self.conv2(keras.activations.swish(self.norm2(x)))
return x + self.residual_projection(inputs)
class ImageEncoder(keras.Sequential):
"""ImageEncoder is the VAE Encoder for StableDiffusion."""
def __init__(self, img_height=512, img_width=512, download_weights=True):
super().__init__(
[
keras.layers.Input((img_height, img_width, 3)),
PaddedConv2D(128, 3, padding=1),
ResnetBlock(128),
ResnetBlock(128),
PaddedConv2D(128, 3, padding=1, strides=2),
ResnetBlock(256),
ResnetBlock(256),
PaddedConv2D(256, 3, padding=1, strides=2),
ResnetBlock(512),
ResnetBlock(512),
PaddedConv2D(512, 3, padding=1, strides=2),
ResnetBlock(512),
ResnetBlock(512),
ResnetBlock(512),
AttentionBlock(512),
ResnetBlock(512),
GroupNormalization(epsilon=1e-5),
keras.layers.Activation("swish"),
PaddedConv2D(8, 3, padding=1),
PaddedConv2D(8, 1),
# TODO(lukewood): can this be refactored to be a Rescaling layer?
# Perhaps some sort of rescale and gather?
# Either way, we may need a lambda to gather the first 4 dimensions.
keras.layers.Lambda(lambda x: x[..., :4] * 0.18215),
]
)
if download_weights:
image_encoder_weights_fpath = keras.utils.get_file(
origin="https://huggingface.co/fchollet/stable-diffusion/resolve/main/vae_encoder.h5",
file_hash="c60fb220a40d090e0f86a6ab4c312d113e115c87c40ff75d11ffcf380aab7ebb",
)
self.load_weights(image_encoder_weights_fpath)
class EndpointHandler():
def __init__(self, path="", version="2"):
self.seed = None
img_height = 512
img_width = 512
self.img_height = round(img_height / 128) * 128
self.img_width = round(img_width / 128) * 128
self.MAX_PROMPT_LENGTH = 77
self.version = version
self.diffusion_model = self._instantiate_diffusion_model(version)
if isinstance(self.diffusion_model, str):
sys.exit(self.diffusion_model)
self.image_encoder = ImageEncoder()
def _instantiate_diffusion_model(self, version: str):
if version == "1.4":
diffusion_model_weights_fpath = keras.utils.get_file(
origin="https://huggingface.co/fchollet/stable-diffusion/resolve/main/kcv_diffusion_model.h5",
file_hash="8799ff9763de13d7f30a683d653018e114ed24a6a819667da4f5ee10f9e805fe",
)
diffusion_model = DiffusionModel(self.img_height, self.img_width, self.MAX_PROMPT_LENGTH)
diffusion_model.load_weights(diffusion_model_weights_fpath)
return diffusion_model
elif version == "2":
diffusion_model_weights_fpath = keras.utils.get_file(
origin="https://huggingface.co/ianstenbit/keras-sd2.1/resolve/main/diffusion_model_v2_1.h5",
file_hash="c31730e91111f98fe0e2dbde4475d381b5287ebb9672b1821796146a25c5132d",
)
diffusion_model = DiffusionModelV2(self.img_height, self.img_width, self.MAX_PROMPT_LENGTH)
diffusion_model.load_weights(diffusion_model_weights_fpath)
return diffusion_model
else:
return f"v{version} is not supported"
def _get_initial_diffusion_noise(self, batch_size, seed):
if seed is not None:
return tf.random.stateless_normal(
(batch_size, self.img_height // 8, self.img_width // 8, 4),
seed=[seed, seed],
)
else:
return tf.random.normal(
(batch_size, self.img_height // 8, self.img_width // 8, 4)
)
def _get_initial_alphas(self, timesteps):
alphas = [_ALPHAS_CUMPROD[t] for t in timesteps]
alphas_prev = [1.0] + alphas[:-1]
return alphas, alphas_prev
def _get_timestep_embedding(self, timestep, batch_size, dim=320, max_period=10000):
half = dim // 2
freqs = tf.math.exp(
-math.log(max_period) * tf.range(0, half, dtype=tf.float32) / half
)
args = tf.convert_to_tensor([timestep], dtype=tf.float32) * freqs
embedding = tf.concat([tf.math.cos(args), tf.math.sin(args)], 0)
embedding = tf.reshape(embedding, [1, -1])
return tf.repeat(embedding, batch_size, axis=0)
def _prepare_img_mask(self, image, mask, batch_size):
image = base64.b64decode(image)
image = np.frombuffer(image, dtype="uint8")
image = np.reshape(image, (512, 512, 3))
image = tf.convert_to_tensor(image)
image = tf.squeeze(image)
image = tf.cast(image, dtype=tf.float32) / 255.0 * 2.0 - 1.0
image = tf.expand_dims(image, axis=0)
known_x0 = self.image_encoder(image)
if image.shape.rank == 3:
known_x0 = tf.repeat(known_x0, batch_size, axis=0)
mask = base64.b64decode(mask)
mask = np.frombuffer(mask, dtype="uint8")
mask = np.reshape(mask, (512, 512, 1))
mask = tf.convert_to_tensor(mask)
mask = tf.expand_dims(mask, axis=0)
mask = tf.cast(
tf.nn.max_pool2d(mask, ksize=8, strides=8, padding="SAME"),
dtype=tf.float32,
)
mask = tf.squeeze(mask)
if mask.shape.rank == 2:
mask = tf.repeat(tf.expand_dims(mask, axis=0), batch_size, axis=0)
mask = tf.expand_dims(mask, axis=-1)
return known_x0, mask
def __call__(self, data: Dict[str, Any]) -> str:
# get inputs
inputs = data.pop("inputs", data)
batch_size = data.pop("batch_size", 1)
context = base64.b64decode(inputs[0])
context = np.frombuffer(context, dtype="float32")
if self.version == "1.4":
context = np.reshape(context, (batch_size, 77, 768))
else:
context = np.reshape(context, (batch_size, 77, 1024))
unconditional_context = base64.b64decode(inputs[1])
unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
if self.version == "1.4":
unconditional_context = np.reshape(unconditional_context, (batch_size, 77, 768))
else:
unconditional_context = np.reshape(unconditional_context, (batch_size, 77, 1024))
num_steps = data.pop("num_steps", 25)
unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
num_resamples = data.pop("num_resamples", 1)
known_x0, mask = self._prepare_img_mask(inputs[2], inputs[3], batch_size)
latent = self._get_initial_diffusion_noise(batch_size, self.seed)
timesteps = tf.range(1, 1000, 1000 // num_steps)
alphas, alphas_prev = self._get_initial_alphas(timesteps)
progbar = keras.utils.Progbar(len(timesteps))
iteration = 0
for index, timestep in list(enumerate(timesteps))[::-1]:
a_t, a_prev = alphas[index], alphas_prev[index]
latent_prev = latent # Set aside the previous latent vector
t_emb = self._get_timestep_embedding(timestep, batch_size)
for resample_index in range(num_resamples):
unconditional_latent = self.diffusion_model.predict_on_batch(
[latent, t_emb, unconditional_context]
)
latent = self.diffusion_model.predict_on_batch([latent, t_emb, context])
latent = unconditional_latent + unconditional_guidance_scale * (
latent - unconditional_latent
)
pred_x0 = (latent_prev - math.sqrt(1 - a_t) * latent) / math.sqrt(a_t)
latent = latent * math.sqrt(1.0 - a_prev) + math.sqrt(a_prev) * pred_x0
# Use known image (x0) to compute latent
if timestep > 1:
noise = tf.random.normal(tf.shape(known_x0), seed=self.seed)
else:
noise = 0.0
known_latent = (
math.sqrt(a_prev) * known_x0 + math.sqrt(1 - a_prev) * noise
)
# Use known latent in unmasked regions
latent = mask * known_latent + (1 - mask) * latent
# Resample latent
if resample_index < num_resamples - 1 and timestep > 1:
beta_prev = 1 - (a_t / a_prev)
latent_prev = tf.random.normal(
tf.shape(latent),
mean=latent * math.sqrt(1 - beta_prev),
stddev=math.sqrt(beta_prev),
seed=self.seed,
)
iteration += 1
progbar.update(iteration)
latent_b64 = base64.b64encode(latent.numpy().tobytes())
latent_b64str = latent_b64.decode()
return latent_b64str
|