kernel
File size: 24,477 Bytes
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
"""Fused MoE kernel."""

import functools
import json
import os
from typing import Any, Callable, Dict, Optional, Tuple

import torch
import triton
import triton.language as tl

from .platforms import current_platform
from .fp8 import scaled_fp8_quant
import moe._custom_ops as ops

VLLM_FUSED_MOE_CHUNK_SIZE = int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768"))


@triton.jit
def fused_moe_kernel(
    # Pointers to matrices
    a_ptr,
    b_ptr,
    c_ptr,
    a_scale_ptr,
    b_scale_ptr,
    topk_weights_ptr,
    sorted_token_ids_ptr,
    expert_ids_ptr,
    num_tokens_post_padded_ptr,
    # Matrix dimensions
    N,
    K,
    EM,
    num_valid_tokens,
    # The stride variables represent how much to increase the ptr by when
    # moving by 1 element in a particular dimension. E.g. `stride_am` is
    # how much to increase `a_ptr` by to get the element one row down
    # (A has M rows).
    stride_am,
    stride_ak,
    stride_be,
    stride_bk,
    stride_bn,
    stride_cm,
    stride_cn,
    stride_bse,
    stride_bsn,
    # Meta-parameters
    BLOCK_SIZE_M: tl.constexpr,
    BLOCK_SIZE_N: tl.constexpr,
    BLOCK_SIZE_K: tl.constexpr,
    GROUP_SIZE_M: tl.constexpr,
    MUL_ROUTED_WEIGHT: tl.constexpr,
    top_k: tl.constexpr,
    compute_type: tl.constexpr,
    use_fp8_w8a8: tl.constexpr,
    use_int8_w8a16: tl.constexpr,
):
    """
    Implements the fused computation for a Mixture of Experts (MOE) using
    token and expert matrices.

    Key Parameters:
    - A: The input tensor representing tokens with shape (*, K), where '*' can
        be any shape representing batches and K is the feature dimension of
        each token.
    - B: The stacked MOE weight tensor with shape (E, N, K), where E is
        the number of experts, K is the input feature dimension, and N is
        the output feature dimension.
    - C: The output cache tensor with shape (M, topk, N), where M is the
        total number of tokens post padding, topk is the number of times
        each token is repeated, and N is the output feature dimension.
    - sorted_token_ids: A tensor containing the sorted indices of tokens,
        repeated topk times and arranged by the expert index they are
        assigned to.
    - expert_ids: A tensor containing the indices of the expert for each
        block. It determines which expert matrix from B should be used for
        each block in A.
    This kernel performs the multiplication of a token by its corresponding
    expert matrix as determined by `expert_ids`. The sorting of
    `sorted_token_ids` by expert index and padding ensures divisibility by
    BLOCK_SIZE_M, which is necessary to maintain consistency in block matrix
    multiplication across different blocks processed by the same expert.
    """
    # -----------------------------------------------------------
    # Map program ids `pid` to the block of C it should compute.
    # This is done in a grouped ordering to promote L2 data reuse.
    pid = tl.program_id(axis=0)
    num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
    num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
    num_pid_in_group = GROUP_SIZE_M * num_pid_n
    group_id = pid // num_pid_in_group
    first_pid_m = group_id * GROUP_SIZE_M
    group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
    pid_m = first_pid_m + ((pid % num_pid_in_group) % group_size_m)
    pid_n = (pid % num_pid_in_group) // group_size_m

    # ----------------------------------------------------------
    # Create pointers for the first blocks of A and B.
    # We will advance this pointer as we move in the K direction
    # and accumulate
    # `a_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
    # `b_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers
    num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
    if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
        return
    offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
    token_mask = offs_token < num_valid_tokens

    offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + (
        offs_token[:, None] // top_k * stride_am + offs_k[None, :] * stride_ak
    )

    off_experts = tl.load(expert_ids_ptr + pid_m)
    b_ptrs = (
        b_ptr
        + off_experts * stride_be
        + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
    )
    if use_int8_w8a16:
        b_scale_ptrs = (
            b_scale_ptr + off_experts * stride_bse + offs_bn[None, :] * stride_bsn
        )
        b_scale = tl.load(b_scale_ptrs)

    if use_fp8_w8a8:
        a_scale = tl.load(a_scale_ptr)
        b_scale = tl.load(b_scale_ptr + off_experts)

    # -----------------------------------------------------------
    # Iterate to compute a block of the C matrix.
    # We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block
    # of fp32 values for higher accuracy.
    # `accumulator` will be converted back to fp16 after the loop.
    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)

    for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
        # Load the next block of A and B, generate a mask by checking the
        # K dimension.
        a = tl.load(
            a_ptrs,
            mask=token_mask[:, None] & (offs_k[None, :] < K - k * BLOCK_SIZE_K),
            other=0.0,
        )
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
        # We accumulate along the K dimension.
        if use_int8_w8a16:
            accumulator = tl.dot(a, b.to(compute_type), acc=accumulator)
        elif use_fp8_w8a8:
            accumulator = tl.dot(a, b, acc=accumulator)
        else:
            accumulator += tl.dot(a, b)
        # Advance the ptrs to the next K block.
        a_ptrs += BLOCK_SIZE_K * stride_ak
        b_ptrs += BLOCK_SIZE_K * stride_bk

    if MUL_ROUTED_WEIGHT:
        moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask, other=0)
        accumulator = accumulator * moe_weight[:, None]
    if use_int8_w8a16:
        accumulator = (accumulator * b_scale).to(compute_type)
    elif use_fp8_w8a8:
        accumulator = (accumulator * a_scale * b_scale).to(compute_type)
    else:
        accumulator = accumulator.to(compute_type)
    # -----------------------------------------------------------
    # Write back the block of the output
    offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
    c_mask = token_mask[:, None] & (offs_cn[None, :] < N)
    tl.store(c_ptrs, accumulator, mask=c_mask)


def moe_align_block_size(
    topk_ids: torch.Tensor, block_size: int, num_experts: int
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Aligns the token distribution across experts to be compatible with block
    size for matrix multiplication.

    Parameters:
    - topk_ids: A tensor of shape [total_tokens, top_k] representing the
        top-k expert indices for each token.
    - block_size: The block size used in block matrix multiplication.
    - num_experts: The total number of experts.

    Returns:
    - sorted_token_ids: A tensor containing the sorted token indices according
        to their allocated expert.
    - expert_ids: A tensor indicating the assigned expert index for each block.
    - num_tokens_post_padded: The total number of tokens after padding,
        ensuring divisibility by block_size.

    This function pads the number of tokens that each expert needs to process
    so that it is divisible by block_size.
    Padding ensures that during block matrix multiplication, the dimensions
    align correctly.

    Example:
    Given topk_ids = [[2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 2, 3]],
    block_size = 4, and num_experts = 4:
    - We initially have 12 tokens (after repeating 'top_k' times) and 4 experts,
        with each expert needing to process 3 tokens.
    - As block_size is 4, we pad 1 token for each expert.
    - First, flatten topk_ids to [2, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 3].
    - Then append padding tokens [12, 12, 12, 12] for each block.
    - After sorting by expert index, we obtain token_ids
        [3, 6, 9, 12, 0, 4, 10, 12, 1, 7, 11, 12, 2, 5, 8, 12].
        Tokens 12 are non-existent (padding) and are ignored in
        the subsequent matrix multiplication.
    - The padding ensures that the total number of tokens is now divisible
        by block_size for proper block matrix operations.
    """
    max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
    sorted_ids = torch.empty(
        (max_num_tokens_padded,), dtype=torch.int32, device=topk_ids.device
    )
    sorted_ids.fill_(topk_ids.numel())
    max_num_m_blocks = triton.cdiv(max_num_tokens_padded, block_size)
    expert_ids = torch.empty(
        (max_num_m_blocks,), dtype=torch.int32, device=topk_ids.device
    )
    num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device)
    ops.moe_align_block_size(
        topk_ids, num_experts, block_size, sorted_ids, expert_ids, num_tokens_post_pad
    )
    return sorted_ids, expert_ids, num_tokens_post_pad


def invoke_fused_moe_kernel(
    A: torch.Tensor,
    B: torch.Tensor,
    C: torch.Tensor,
    A_scale: Optional[torch.Tensor],
    B_scale: Optional[torch.Tensor],
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    sorted_token_ids: torch.Tensor,
    expert_ids: torch.Tensor,
    num_tokens_post_padded: torch.Tensor,
    mul_routed_weight: bool,
    top_k: int,
    config: Dict[str, Any],
    compute_type: tl.dtype,
    use_fp8_w8a8: bool,
    use_int8_w8a16: bool,
) -> None:
    assert topk_weights.stride(1) == 1
    assert sorted_token_ids.stride(0) == 1

    if use_fp8_w8a8:
        A, A_scale = scaled_fp8_quant(A, A_scale)
        assert B_scale is not None
    elif use_int8_w8a16:
        assert B_scale is not None
    else:
        assert A_scale is None
        assert B_scale is None

    grid = lambda META: (
        triton.cdiv(sorted_token_ids.shape[0], META["BLOCK_SIZE_M"])
        * triton.cdiv(B.shape[1], META["BLOCK_SIZE_N"]),
    )

    fused_moe_kernel[grid](
        A,
        B,
        C,
        A_scale,
        B_scale,
        topk_weights,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        B.shape[1],
        B.shape[2],
        sorted_token_ids.shape[0],
        topk_ids.numel(),
        A.stride(0),
        A.stride(1),
        B.stride(0),
        B.stride(2),
        B.stride(1),
        C.stride(1),
        C.stride(2),
        B_scale.stride(0) if B_scale is not None and use_int8_w8a16 else 0,
        B_scale.stride(1) if B_scale is not None and use_int8_w8a16 else 0,
        MUL_ROUTED_WEIGHT=mul_routed_weight,
        top_k=top_k,
        compute_type=compute_type,
        use_fp8_w8a8=use_fp8_w8a8,
        use_int8_w8a16=use_int8_w8a16,
        **config,
    )


def get_config_file_name(E: int, N: int, dtype: Optional[str]) -> str:
    device_name = current_platform.get_device_name().replace(" ", "_")
    dtype_selector = "" if not dtype else f",dtype={dtype}"
    return f"E={E},N={N},device_name={device_name}{dtype_selector}.json"


@functools.lru_cache
def get_moe_configs(E: int, N: int, dtype: Optional[str]) -> Optional[Dict[int, Any]]:
    """
    Return optimized configurations for the fused MoE kernel.

    The return value will be a dictionary that maps an irregular grid of
    batch sizes to configurations of the fused_moe kernel. To evaluate the
    kernel on a given batch size bs, the closest batch size in the grid should
    be picked and the associated configuration chosen to invoke the kernel.
    """

    # First look up if an optimized configuration is available in the configs
    # directory
    json_file_name = get_config_file_name(E, N, dtype)

    config_file_path = os.path.join(
        os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
    )
    if os.path.exists(config_file_path):
        with open(config_file_path) as f:
            # If a configuration has been found, return it
            return {int(key): val for key, val in json.load(f).items()}

    # If no optimized configuration is available, we will use the default
    # configuration
    return None


def get_default_config(
    M: int,
    E: int,
    N: int,
    K: int,
    topk: int,
    dtype: Optional[str],
    is_marlin: bool,
) -> Dict[str, int]:
    config = {
        "BLOCK_SIZE_M": 64,
        "BLOCK_SIZE_N": 64,
        "BLOCK_SIZE_K": 32,
        "GROUP_SIZE_M": 8,
    }
    # A heuristic: fused marlin works faster with this config for small M
    if M <= E or (is_marlin and M <= 32):
        config = {
            "BLOCK_SIZE_M": 16,
            "BLOCK_SIZE_N": 32,
            "BLOCK_SIZE_K": 64,
            "GROUP_SIZE_M": 1,
        }
    return config


def try_get_optimal_moe_config(
    w1_shape: Tuple[int, ...],
    w2_shape: Tuple[int, ...],
    top_k: int,
    dtype: Optional[str],
    M: int,
    override_config: Optional[Dict[str, Any]] = None,
    is_marlin: bool = False,
):
    if override_config:
        config = override_config
    else:
        # First try to load optimal config from the file
        E, _, N = w2_shape
        configs = get_moe_configs(E, N, dtype)

        if configs:
            # If an optimal configuration map has been found, look up the
            # optimal config
            config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
        else:
            # Else use the default config
            config = get_default_config(M, E, N, w1_shape[2], top_k, dtype, is_marlin)
    return config


def fused_topk(
    hidden_states: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
):
    assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"

    M, _ = hidden_states.shape

    topk_weights = torch.empty(
        M, topk, dtype=torch.float32, device=hidden_states.device
    )
    topk_ids = torch.empty(M, topk, dtype=torch.int32, device=hidden_states.device)
    token_expert_indicies = torch.empty(
        M, topk, dtype=torch.int32, device=hidden_states.device
    )

    ops.topk_softmax(
        topk_weights,
        topk_ids,
        token_expert_indicies,
        gating_output.float(),  # TODO(woosuk): Optimize this.
    )
    del token_expert_indicies  # Not used. Will be used in the future.

    if renormalize:
        topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)

    return topk_weights, topk_ids


# This is used by the Deepseek-V2 model
def grouped_topk(
    hidden_states: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
    num_expert_group: int = 0,
    topk_group: int = 0,
):

    assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"

    scores = torch.softmax(gating_output, dim=-1)
    num_token = scores.shape[0]
    group_scores = (
        scores.view(num_token, num_expert_group, -1).max(dim=-1).values
    )  # [n, n_group]
    group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
        1
    ]  # [n, top_k_group]
    group_mask = torch.zeros_like(group_scores)  # [n, n_group]
    group_mask.scatter_(1, group_idx, 1)  # [n, n_group]
    score_mask = (
        group_mask.unsqueeze(-1)
        .expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
        .reshape(num_token, -1)
    )  # [n, e]
    tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0)  # [n, e]
    topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)

    if renormalize:
        topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)

    return topk_weights.to(torch.float32), topk_ids.to(torch.int32)


def get_config_dtype_str(
    dtype: torch.dtype,
    use_int8_w8a16: Optional[bool] = False,
    use_fp8_w8a8: Optional[bool] = False,
):
    if use_fp8_w8a8:
        return "fp8_w8a8"
    elif use_int8_w8a16:
        return "int8_w8a16"
    elif dtype == torch.float:
        # avoiding cases where kernel fails when float32 MoE
        # use fp16/bfloat16 configs
        return "float32"
    return None


def fused_experts(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    inplace: bool = False,
    override_config: Optional[Dict[str, Any]] = None,
    use_fp8_w8a8: bool = False,
    use_int8_w8a16: bool = False,
    w1_scale: Optional[torch.Tensor] = None,
    w2_scale: Optional[torch.Tensor] = None,
    a1_scale: Optional[torch.Tensor] = None,
    a2_scale: Optional[torch.Tensor] = None,
):
    # Check constraints.
    assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
    assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
    assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
    assert w1.is_contiguous(), "Expert weights1 must be contiguous"
    assert w2.is_contiguous(), "Expert weights2 must be contiguous"
    assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]

    num_tokens, _ = hidden_states.shape
    E, N, _ = w1.shape
    # We execute the fused_moe kernel in chunks to circumvent this issue:
    # https://github.com/vllm-project/vllm/issues/5938
    CHUNK_SIZE = VLLM_FUSED_MOE_CHUNK_SIZE
    M = min(num_tokens, CHUNK_SIZE)
    config_dtype = get_config_dtype_str(
        use_fp8_w8a8=use_fp8_w8a8,
        use_int8_w8a16=use_int8_w8a16,
        dtype=hidden_states.dtype,
    )

    get_config_func = functools.partial(
        try_get_optimal_moe_config,
        w1.shape,
        w2.shape,
        topk_ids.shape[1],
        config_dtype,
        override_config=override_config,
    )

    config = get_config_func(M)

    intermediate_cache1 = torch.empty(
        (M, topk_ids.shape[1], N),
        device=hidden_states.device,
        dtype=hidden_states.dtype,
    )
    intermediate_cache2 = torch.empty(
        (M * topk_ids.shape[1], N // 2),
        device=hidden_states.device,
        dtype=hidden_states.dtype,
    )
    intermediate_cache3 = torch.empty(
        (M, topk_ids.shape[1], w2.shape[1]),
        device=hidden_states.device,
        dtype=hidden_states.dtype,
    )

    compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16

    if inplace:
        out_hidden_states = hidden_states
    else:
        out_hidden_states = torch.empty_like(hidden_states)

    for chunk in range((num_tokens // CHUNK_SIZE) + 1):
        begin_chunk_idx, end_chunk_idx = (
            chunk * CHUNK_SIZE,
            min((chunk + 1) * CHUNK_SIZE, num_tokens),
        )
        curr_hidden_states = hidden_states[begin_chunk_idx:end_chunk_idx]
        tokens_in_chunk, _ = curr_hidden_states.shape

        if tokens_in_chunk == 0:
            break

        if tokens_in_chunk < CHUNK_SIZE and chunk > 0:
            # Adjust the intermediate cache size and config for the last
            # chunk. Note that in most cases we only have one chunk
            # so the cache size and config are already set correctly and
            # do not need to be adjusted.
            intermediate_cache1 = intermediate_cache1[:tokens_in_chunk]
            intermediate_cache2 = intermediate_cache2[:tokens_in_chunk]
            intermediate_cache3 = intermediate_cache3[:tokens_in_chunk]
            config = get_config_func(tokens_in_chunk)

        curr_topk_ids = topk_ids[begin_chunk_idx:end_chunk_idx]
        curr_topk_weights = topk_weights[begin_chunk_idx:end_chunk_idx]

        sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
            curr_topk_ids, config["BLOCK_SIZE_M"], E
        )

        invoke_fused_moe_kernel(
            curr_hidden_states,
            w1,
            intermediate_cache1,
            a1_scale,
            w1_scale,
            curr_topk_weights,
            curr_topk_ids,
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            False,
            topk_ids.shape[1],
            config,
            compute_type=compute_type,
            use_fp8_w8a8=use_fp8_w8a8,
            use_int8_w8a16=use_int8_w8a16,
        )

        ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))

        invoke_fused_moe_kernel(
            intermediate_cache2,
            w2,
            intermediate_cache3,
            a2_scale,
            w2_scale,
            curr_topk_weights,
            curr_topk_ids,
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            True,
            1,
            config,
            compute_type=compute_type,
            use_fp8_w8a8=use_fp8_w8a8,
            use_int8_w8a16=use_int8_w8a16,
        )

        ops.moe_sum(
            intermediate_cache3.view(*intermediate_cache3.shape),
            out_hidden_states[begin_chunk_idx:end_chunk_idx],
        )
    return out_hidden_states


def fused_moe(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
    inplace: bool = False,
    override_config: Optional[Dict[str, Any]] = None,
    use_grouped_topk: bool = False,
    num_expert_group: Optional[int] = None,
    topk_group: Optional[int] = None,
    custom_routing_function: Optional[Callable] = None,
    use_fp8_w8a8: bool = False,
    use_int8_w8a16: bool = False,
    w1_scale: Optional[torch.Tensor] = None,
    w2_scale: Optional[torch.Tensor] = None,
    a1_scale: Optional[torch.Tensor] = None,
    a2_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    """
    This function computes a Mixture of Experts (MoE) layer using two sets of
    weights, w1 and w2, and top-k gating mechanism.

    Parameters:
    - hidden_states (torch.Tensor): The input tensor to the MoE layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - gating_output (torch.Tensor): The output of the gating operation
        (before softmax).
    - topk (int): The number of top-k experts to select.
    - renormalize (bool): If True, renormalize the top-k weights to sum to 1.
    - inplace (bool): If True, perform the operation in-place.
        Defaults to False.
    - override_config (Optional[Dict[str, Any]]): Optional override
        for the kernel configuration.
    - num_expert_group: Optional[int]: additional parameter for grouped_topk
    - topk_group: Optional[int]: additional parameter for grouped_topk
    - use_grouped_topk: If True, use grouped_topk instead of fused_topk
        note: Deepseekv2 model uses grouped_topk
    - use_fp8_w8a8 (bool): If True, use fp8 arithmetic to compute the inner
        products for w1 and w2. Defaults to False.
    - use_int8_w8a16 (bool): If True, use fp8 arithmetic to compute the inner
        products for w1 and w2. Defaults to False.
    - w1_scale (Optional[torch.Tensor]): Optional scale to be used for
        w1.
    - w2_scale (Optional[torch.Tensor]): Optional scale to be used for
        w2.

    Returns:
    - torch.Tensor: The output tensor after applying the MoE layer.
    """
    # Check constraints.
    assert gating_output.shape[1] == w1.shape[0], "Number of experts mismatch"

    if use_grouped_topk:
        assert num_expert_group is not None and topk_group is not None
        topk_weights, topk_ids = grouped_topk(
            hidden_states,
            gating_output,
            topk,
            renormalize,
            num_expert_group,
            topk_group,
        )
    elif custom_routing_function is None:
        topk_weights, topk_ids = fused_topk(
            hidden_states, gating_output, topk, renormalize
        )
    else:
        topk_weights, topk_ids = custom_routing_function(
            hidden_states, gating_output, topk, renormalize
        )

    return fused_experts(
        hidden_states,
        w1,
        w2,
        topk_weights,
        topk_ids,
        inplace=inplace,
        override_config=override_config,
        use_fp8_w8a8=use_fp8_w8a8,
        use_int8_w8a16=use_int8_w8a16,
        w1_scale=w1_scale,
        w2_scale=w2_scale,
        a1_scale=a1_scale,
        a2_scale=a2_scale,
    )