kernel
File size: 14,205 Bytes
29e93ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""This file is used for /tests and /benchmarks"""

from typing import List, Optional

import numpy
import torch

from moe.scalar_type import ScalarType, scalar_types

SUPPORTED_GPTQ_QUANT_TYPES = [scalar_types.uint4b8, scalar_types.uint8b128]
SUPPORTED_GROUP_SIZES = [-1, 32, 64, 128]

MARLIN_QQQ_SUPPORTED_NUM_BITS = [4]

# Note: this is a hack. We should update each model to register the
# stacked params and get it from there instead in a future PR.
# fused_name: List[shard_name]
FUSED_LAYER_NAME_MAPPING = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}


def pack_quantized_values_into_int32(
    w_q: torch.Tensor, wtype: ScalarType, packed_dim: int = 0
):
    # move dim to pack to the end
    perm = (*[i for i in range(len(w_q.shape)) if i != packed_dim], packed_dim)
    inv_perm = tuple(perm.index(i) for i in range(len(perm)))
    w_q_perm = w_q.permute(perm)

    pack_factor = 32 // wtype.size_bits
    mask = (1 << wtype.size_bits) - 1

    new_shape_perm = list(w_q_perm.shape)
    assert w_q_perm.shape[-1] % pack_factor == 0
    new_shape_perm[-1] //= pack_factor

    res = torch.zeros(new_shape_perm, dtype=torch.int32, device=w_q.device)
    for i in range(pack_factor):
        res |= (w_q_perm[..., i::pack_factor] & mask) << wtype.size_bits * i

    return res.permute(inv_perm)


def unpack_quantized_values_into_int32(
    w_q: torch.Tensor, wtype: ScalarType, packed_dim: int = 0
):
    # move dim to pack to the end
    perm = (*[i for i in range(len(w_q.shape)) if i != packed_dim], packed_dim)
    inv_perm = tuple(perm.index(i) for i in range(len(perm)))
    w_q_perm = w_q.permute(perm)

    pack_factor = 32 // wtype.size_bits
    mask = (1 << wtype.size_bits) - 1

    new_shape_perm = list(w_q_perm.shape)
    new_shape_perm[-1] *= pack_factor

    res = torch.zeros(new_shape_perm, dtype=torch.int32, device=w_q.device)
    for i in range(pack_factor):
        res[..., i::pack_factor] = (w_q_perm >> wtype.size_bits * i) & mask

    return res.permute(inv_perm)


def is_layer_skipped(prefix: str, ignored_layers: List[str]) -> bool:
    # prefix: model.layers.0.self_attn.q_proj
    # proj_name: q_proj
    proj_name = prefix.split(".")[-1]
    if proj_name in FUSED_LAYER_NAME_MAPPING:
        shard_prefixes = [
            prefix.replace(proj_name, shard_proj_name)
            for shard_proj_name in FUSED_LAYER_NAME_MAPPING[proj_name]
        ]

        is_skipped = None
        for shard_prefix in shard_prefixes:
            is_shard_skipped = shard_prefix in ignored_layers

            if is_skipped is None:
                is_skipped = is_shard_skipped
            elif is_shard_skipped != is_skipped:
                raise ValueError(
                    f"Detected some but not all shards of {prefix} "
                    "are quantized. All shards of fused layers "
                    "to have the same precision."
                )
    else:
        is_skipped = prefix in ignored_layers

    assert is_skipped is not None
    return is_skipped


def get_pack_factor(num_bits):
    assert 32 % num_bits == 0, f"Unsupported num_bits = {num_bits}"
    return 32 // num_bits


def permute_rows(
    q_w: torch.Tensor,
    w_ref: torch.Tensor,
    group_size: int,
    test_perm: Optional[torch.Tensor] = None,
):
    assert q_w.shape == w_ref.shape

    orig_device = q_w.device
    k_size, _ = q_w.shape

    g_idx = torch.zeros((k_size,), dtype=torch.int32)
    for i in range(k_size):
        g_idx[i] = i // group_size

    # Simulate act_order by doing a random permutation on K
    rand_perm = test_perm if test_perm is not None else torch.randperm(k_size)

    g_idx = g_idx[rand_perm].contiguous()
    q_w = q_w[rand_perm, :].contiguous()
    w_ref = w_ref[rand_perm, :].contiguous()

    return (
        w_ref.to(device=orig_device),
        q_w.to(device=orig_device),
        g_idx.to(device=orig_device),
        rand_perm.to(device=orig_device),
    )


def quantize_weights(
    w: torch.Tensor,
    quant_type: ScalarType,
    group_size: Optional[int],
    zero_points: bool = False,
    ref_zero_points_after_scales: bool = False,
):
    assert (
        quant_type.is_integer()
    ), "Floating point quantization may work but has not been tested"
    assert not zero_points or group_size is not None, (
        "to have group zero points, group_size must be provided "
        "(-1 group_size is channelwise)"
    )

    orig_device = w.device
    orig_type = w.dtype
    size_k, size_n = w.shape

    assert w.is_floating_point(), "w must be float"

    if group_size == -1:
        group_size = size_k

    # Reshape to [groupsize, -1]
    if group_size is not None and group_size < size_k:
        w = w.reshape((-1, group_size, size_n))
        w = w.permute(1, 0, 2)
        w = w.reshape((group_size, -1))

    # Compute scale for each group
    max_val = torch.max(w, 0, keepdim=True).values
    min_val = torch.min(w, 0, keepdim=True).values

    max_q_val = quant_type.max()
    min_q_val = quant_type.min()

    w_s = torch.Tensor([1.0]).to(w.device)  # unscaled case
    maybe_w_zp = None
    if group_size is not None:
        if zero_points:
            assert not quant_type.is_signed() and quant_type.max() > 0
            w_s = (max_val - min_val).clamp(min=1e-5) / quant_type.max()
            maybe_w_zp = (
                torch.round(torch.abs(min_val / w_s)).clamp(min_q_val, max_q_val).int()
            )
        else:
            # If the bias is such that there are no possible negative/positive
            #  values, set the max value to inf to avoid divide by 0
            w_s = torch.max(
                abs(max_val / (max_q_val if max_q_val != 0 else torch.inf)),
                abs(min_val / (min_q_val if min_q_val != 0 else torch.inf)),
            )

    # Quantize
    w_q = torch.round(w / w_s).int() + (maybe_w_zp if zero_points else 0)
    w_q = torch.clamp(w_q, min_q_val, max_q_val)

    # Compute ref (dequantized)
    # For some kernels (namely Machete) the zero-points are applied after the
    # scales are applied, for this case computing the reference in similar way
    # allows us to use tighter error tolerances in our unit tests.
    if ref_zero_points_after_scales and maybe_w_zp is not None:
        w_ref = w_q.to(orig_type) * w_s - maybe_w_zp.to(orig_type) * w_s
    else:
        w_ref = (w_q - (maybe_w_zp if zero_points else 0)).to(orig_type) * w_s

    if quant_type.has_bias():
        w_q += quant_type.bias

    # Restore original shapes
    if group_size is not None and group_size < size_k:

        def reshape_w(w):
            w = w.reshape((group_size, -1, size_n))
            w = w.permute(1, 0, 2)
            w = w.reshape((size_k, size_n)).contiguous()
            return w

        w_q = reshape_w(w_q)
        w_ref = reshape_w(w_ref)
        w_s = w_s.reshape((-1, size_n)).contiguous()

    if maybe_w_zp is not None:
        maybe_w_zp = maybe_w_zp.reshape((-1, size_n)).contiguous()
        maybe_w_zp = maybe_w_zp.to(device=orig_device)

    return (
        w_ref.to(device=orig_device),
        w_q.to(device=orig_device),
        w_s if group_size is not None else None,
        maybe_w_zp,
    )


def gptq_quantize_weights(
    w: torch.Tensor,
    quant_type: ScalarType,
    group_size: int,
    act_order: bool,
    test_perm: Optional[torch.Tensor] = None,
):
    size_k, _ = w.shape

    assert w.is_floating_point(), "w must be float"
    assert (
        quant_type in SUPPORTED_GPTQ_QUANT_TYPES
    ), f"Unsupported gptq type = {quant_type}"
    assert group_size in SUPPORTED_GROUP_SIZES + [
        size_k
    ], f"Unsupported groupsize = {group_size}"

    w_ref, w_q, w_s, _ = quantize_weights(w, quant_type, group_size)

    # Apply act_order
    g_idx = torch.empty(0, dtype=torch.int, device=w.device)
    rand_perm = torch.empty(0, dtype=torch.int, device=w.device)
    if act_order:
        assert (
            group_size < size_k
        ), "For act_order, groupsize = {} must be less than size_k = {}".format(
            group_size, size_k
        )

        w_ref, w_q, g_idx, rand_perm = permute_rows(w_q, w_ref, group_size, test_perm)

    return w_ref, w_q, w_s, g_idx, rand_perm


# QQQ employs different quant schemes for per-group and
# per-channel quantization.
def qqq_quantize_weights(w: torch.Tensor, num_bits: int, group_size: int):
    orig_device = w.device
    size_k, size_n = w.shape

    assert w.is_floating_point(), "w must be float"
    assert (
        num_bits in MARLIN_QQQ_SUPPORTED_NUM_BITS
    ), f"Unsupported num_bits = {num_bits}"
    assert group_size in SUPPORTED_GROUP_SIZES + [
        size_k
    ], f"Unsupported groupsize = {group_size}"

    if group_size == -1:
        group_size = size_k
    assert group_size <= size_k

    if group_size < size_k:
        # Reshape to [groupsize, -1]
        w = w.reshape((-1, group_size, size_n))
        w = w.permute(1, 0, 2)
        w = w.reshape((group_size, -1))

        max_q_val = 2**num_bits - 1
        half_q_val = (max_q_val + 1) // 2

        # Compute scale for each group
        s_group = torch.max(torch.abs(w), 0, keepdim=True)[0]
        s_group *= 2 / max_q_val  # 2 => symmetric

        # Quantize
        q_w = torch.round(w / s_group).int()
        q_w += half_q_val
        q_w = torch.clamp(q_w, 0, max_q_val)
        # Compute ref (dequantized)
        w_ref = (q_w - half_q_val).half() * s_group

        # Restore original shapes
        def reshape_w(w):
            w = w.reshape((group_size, -1, size_n))
            w = w.permute(1, 0, 2)
            w = w.reshape((size_k, size_n)).contiguous()
            return w

        q_w = reshape_w(q_w)
        w_ref = reshape_w(w_ref)

        # Compute int8 quantization scale for each channel
        s_channel = torch.max(torch.abs(w_ref), 0, keepdim=True)[0]
        s_channel /= 127.0
        t_int8 = (w_ref / s_channel).round().clamp(-128, 127).to(torch.int8)
        w_ref = t_int8.half() * s_channel
        s_channel = s_channel.reshape(1, -1).to(dtype=torch.float)

        # Fuse scales
        s_group = (s_group.reshape(-1, size_n).contiguous() / s_channel).to(
            dtype=torch.half
        )
    else:
        max_q_val = 2 ** (num_bits - 1) - 1

        # Compute scale for each channel
        s_channel = torch.max(torch.abs(w), 0, keepdim=True)[0]
        s_channel /= max_q_val

        # Quantize
        q_w = torch.round(w / s_channel).int()
        q_w = torch.clamp(q_w, -max_q_val, max_q_val)
        # Compute ref (dequantized)
        w_ref = q_w.half() * s_channel

        s_group = torch.tensor([], dtype=torch.half)
        # div 2 ** (8 - self.bits)) to offset right shift in unpacking
        s_channel /= 2 ** (8 - num_bits)
        s_channel = s_channel.reshape(-1, size_n).contiguous().to(torch.float)

    return (
        w_ref.to(device=orig_device),
        q_w.to(device=orig_device),
        s_group.to(device=orig_device),
        s_channel.to(device=orig_device),
    )


def sort_weights(q_w: torch.Tensor, g_idx: torch.Tensor):
    orig_device = q_w.device

    sort_indices = torch.argsort(g_idx).to(dtype=torch.int32)  # Sort based on g_idx

    g_idx = g_idx[sort_indices].contiguous()
    q_w = q_w[sort_indices, :].contiguous()

    return (
        q_w.to(device=orig_device),
        g_idx.to(device=orig_device),
        sort_indices.to(device=orig_device),
    )


def pack_rows(
    q_w: torch.Tensor,
    num_bits: int,
    size_k: int,
    size_n: int,
):
    assert q_w.shape == (size_k, size_n)

    pack_factor = get_pack_factor(num_bits)
    assert size_k % pack_factor == 0

    orig_device = q_w.device

    q_w = q_w.cpu().numpy().astype(numpy.uint32)

    q_res = numpy.zeros((size_k // pack_factor, size_n), dtype=numpy.uint32)

    for i in range(pack_factor):
        q_res |= q_w[i::pack_factor, :] << num_bits * i

    q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
    return q_res


def pack_cols(
    q_w: torch.Tensor,
    num_bits: int,
    size_k: int,
    size_n: int,
):
    assert q_w.shape == (size_k, size_n)

    pack_factor = get_pack_factor(num_bits)
    assert size_n % pack_factor == 0

    orig_device = q_w.device

    q_w = q_w.cpu().numpy().astype(numpy.uint32)

    q_res = numpy.zeros((size_k, size_n // pack_factor), dtype=numpy.uint32)

    for i in range(pack_factor):
        q_res |= q_w[:, i::pack_factor] << num_bits * i

    q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
    q_res = q_res.contiguous()

    return q_res


def unpack_cols(
    packed_q_w: torch.Tensor,
    num_bits: int,
    size_k: int,
    size_n: int,
):
    pack_factor = get_pack_factor(num_bits)
    assert size_n % pack_factor == 0
    assert packed_q_w.shape == (
        size_k,
        size_n // pack_factor,
    ), "packed_q_w.shape = {} size_k = {}, size_n = {} pack_Factor = {}".format(
        packed_q_w.shape, size_k, size_n, pack_factor
    )

    orig_device = packed_q_w.device

    packed_q_w_cpu = packed_q_w.cpu().numpy().astype(numpy.uint32)
    q_res = numpy.zeros((size_k, size_n), dtype=numpy.uint32)

    mask = (1 << num_bits) - 1
    for i in range(pack_factor):
        vals = packed_q_w_cpu & mask
        packed_q_w_cpu >>= num_bits
        q_res[:, i::pack_factor] = vals

    q_res = torch.from_numpy(q_res.astype(numpy.int32)).to(orig_device)
    q_res = q_res.contiguous()

    return q_res


def gptq_pack(
    q_w: torch.Tensor,
    num_bits: int,
    size_k: int,
    size_n: int,
):
    return pack_rows(q_w, num_bits, size_k, size_n)


def awq_pack(
    q_w: torch.Tensor,
    num_bits: int,
    size_k: int,
    size_n: int,
):
    assert q_w.shape == (size_k, size_n)

    # Interleave column dim (for the dequantize code) and pack it to int32
    if num_bits == 4:
        interleave = numpy.array([0, 2, 4, 6, 1, 3, 5, 7])
    elif num_bits == 8:
        interleave = numpy.array([0, 2, 1, 3])
    else:
        raise Exception("num_bits must be 4 or 8, got {}".format(num_bits))

    q_w = q_w.reshape((-1, len(interleave)))[:, interleave].ravel()
    q_w = q_w.reshape((-1, size_n)).contiguous()

    return pack_cols(q_w, num_bits, size_k, size_n)