|
"""Utility functions used for tests and benchmarks""" |
|
|
|
from typing import List, Optional |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from moe.scalar_type import ScalarType |
|
|
|
from .marlin_utils import GPTQ_MARLIN_TILE, marlin_permute_scales, marlin_zero_points |
|
from .quant_utils import ( |
|
get_pack_factor, |
|
gptq_quantize_weights, |
|
quantize_weights, |
|
sort_weights, |
|
) |
|
|
|
|
|
class MarlinWorkspace: |
|
|
|
def __init__(self, out_features, min_thread_n, max_parallel): |
|
assert ( |
|
out_features % min_thread_n == 0 |
|
), "out_features = {} is undivisible by min_thread_n = {}".format( |
|
out_features, min_thread_n |
|
) |
|
|
|
max_workspace_size = (out_features // min_thread_n) * max_parallel |
|
|
|
self.scratch = torch.zeros(max_workspace_size, dtype=torch.int, device="cuda") |
|
|
|
|
|
def marlin_permute_weights(q_w, size_k, size_n, perm, tile=GPTQ_MARLIN_TILE): |
|
assert q_w.shape == (size_k, size_n) |
|
assert size_k % tile == 0, f"size_k = {size_k}, tile = {tile}" |
|
assert size_n % tile == 0, f"size_k = {size_n}, tile = {tile}" |
|
|
|
|
|
q_w = q_w.reshape((size_k // tile, tile, size_n // tile, tile)) |
|
q_w = q_w.permute((0, 2, 1, 3)) |
|
q_w = q_w.reshape((size_k // tile, size_n * tile)) |
|
|
|
q_w = q_w.reshape((-1, perm.numel()))[:, perm].reshape(q_w.shape) |
|
|
|
return q_w |
|
|
|
|
|
def marlin_weights(q_w, size_k, size_n, num_bits, perm): |
|
|
|
q_w = marlin_permute_weights(q_w, size_k, size_n, perm) |
|
|
|
|
|
pack_factor = get_pack_factor(num_bits) |
|
orig_device = q_w.device |
|
|
|
q_w = q_w.cpu().numpy().astype(np.uint32) |
|
|
|
q_packed = np.zeros((q_w.shape[0], q_w.shape[1] // pack_factor), dtype=np.uint32) |
|
for i in range(pack_factor): |
|
q_packed |= q_w[:, i::pack_factor] << num_bits * i |
|
|
|
q_packed = torch.from_numpy(q_packed.astype(np.int32)).to(orig_device) |
|
|
|
return q_packed |
|
|
|
|
|
def get_weight_perm(num_bits: int): |
|
perm_list: List[int] = [] |
|
for i in range(32): |
|
perm1: List[int] = [] |
|
col = i // 4 |
|
for block in [0, 1]: |
|
for row in [ |
|
2 * (i % 4), |
|
2 * (i % 4) + 1, |
|
2 * (i % 4 + 4), |
|
2 * (i % 4 + 4) + 1, |
|
]: |
|
perm1.append(16 * row + col + 8 * block) |
|
for j in range(4): |
|
perm_list.extend([p + 256 * j for p in perm1]) |
|
|
|
perm = np.array(perm_list) |
|
|
|
if num_bits == 4: |
|
interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7]) |
|
elif num_bits == 8: |
|
interleave = np.array([0, 2, 1, 3]) |
|
else: |
|
raise Exception("num_bits must be 4 or 8, got {}".format(num_bits)) |
|
|
|
perm = perm.reshape((-1, len(interleave)))[:, interleave].ravel() |
|
perm = torch.from_numpy(perm) |
|
return perm |
|
|
|
|
|
def marlin_quantize( |
|
w: torch.Tensor, |
|
quant_type: ScalarType, |
|
group_size: int, |
|
act_order: bool, |
|
test_perm: Optional[torch.Tensor] = None, |
|
): |
|
size_k, size_n = w.shape |
|
num_bits = quant_type.size_bits |
|
|
|
|
|
if group_size == -1: |
|
group_size = size_k |
|
assert group_size <= size_k |
|
|
|
|
|
w_ref, q_w, s, g_idx, rand_perm = gptq_quantize_weights( |
|
w, quant_type, group_size, act_order, test_perm |
|
) |
|
|
|
|
|
|
|
sort_indices = torch.empty(0, dtype=torch.int, device=w.device) |
|
if act_order: |
|
q_w, g_idx, sort_indices = sort_weights(q_w, g_idx) |
|
|
|
|
|
weight_perm = get_weight_perm(num_bits) |
|
marlin_q_w = marlin_weights(q_w, size_k, size_n, num_bits, weight_perm) |
|
marlin_s = marlin_permute_scales(s, size_k, size_n, group_size) |
|
|
|
|
|
res_list = [w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, rand_perm] |
|
for i in range(len(res_list)): |
|
res_list[i] = res_list[i].to(w.device) |
|
|
|
return res_list |
|
|
|
|
|
def awq_marlin_quantize(w: torch.Tensor, quant_type: ScalarType, group_size: int): |
|
size_k, size_n = w.shape |
|
|
|
|
|
if group_size == -1: |
|
group_size = size_k |
|
assert group_size <= size_k |
|
|
|
|
|
assert size_k % group_size == 0 |
|
num_groups = size_k // group_size |
|
|
|
|
|
w_ref, q_w, s, zp = quantize_weights(w, quant_type, group_size, zero_points=True) |
|
|
|
|
|
weight_perm = get_weight_perm(quant_type.size_bits) |
|
marlin_q_w = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm) |
|
marlin_s = marlin_permute_scales(s, size_k, size_n, group_size) |
|
marlin_zp = marlin_zero_points(zp, num_groups, size_n, quant_type.size_bits) |
|
|
|
|
|
res_list = [w_ref, marlin_q_w, marlin_s, marlin_zp] |
|
for i in range(len(res_list)): |
|
res_list[i] = res_list[i].to(w.device) |
|
|
|
return res_list |
|
|